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Spike timing-dependent plasticity (STDP) and other conventional Hebbian-type plasticity rules are prone to produce runaway dynamics
of synaptic weights. Once potentiated, a synapse would have higher probability to lead to spikes and thus to be further potentiated, but
once depressed, a synapse would tend to be further depressed. The runaway synaptic dynamics can be prevented by precisely balancing
STDP rules for potentiation and depression; however, experimental evidence shows a great variety of potentiation and depression
windows and magnitudes. Here we show that modifications of synapses to layer 2/3 pyramidal neurons from rat visual and auditory
cortices in slices can be induced by intracellular tetanization: bursts of postsynaptic spikes without presynaptic stimulation. Induction of
these heterosynaptic changes depended on the rise of intracellular calcium, and their direction and magnitude correlated with initial state
of release mechanisms. We suggest that this type of plasticity serves as a mechanism that stabilizes the distribution of synaptic weights
and prevents their runaway dynamics. To test this hypothesis, we develop a cortical neuron model implementing both homosynaptic
(STDP) and heterosynaptic plasticity with properties matching the experimental data. We find that heterosynaptic plasticity effectively
prevented runaway dynamics for the tested range of STDP and input parameters. Synaptic weights, although shifted from the original,
remained normally distributed and nonsaturated. Our study presents a biophysically constrained model of how the interaction of
different forms of plasticity—Hebbian and heterosynaptic—may prevent runaway synaptic dynamics and keep synaptic weights unsat-
urated and thus capable of further plastic changes and formation of new memories.

Introduction
Synaptic plasticity is considered a cellular mechanism of learning
and memory (Bliss and Collingridge, 1993; Malenka and Bear,
2004). Spike timing-dependent plasticity (STDP) is experimen-
tally well-characterized form of plasticity that modifies synaptic
weights depending on the relative timing of presynaptic input
and postsynaptic spikes. Inputs that were active before the post-
synaptic spike and thus contributed to its generation are poten-
tiated, while synapses that are active after the postsynaptic spike
are depressed (Markram et al., 1997; Magee and Johnston, 1997;
Abbott and Nelson, 2000; Caporale and Dan, 2008). These formal
rules are broadly used in computational models of learning and
developmental processes (Miller, 1996; Song et al., 2000;
Kempter et al., 2001; Rubin et al., 2001; Song and Abbott, 2001;
Clopath et al., 2010). However, STDP and other conventional
Hebbian-type plasticity rules impose a positive feedback on syn-
aptic changes, and are prone to produce runaway dynamics of
synaptic weights. Potentiated synapses have higher probability to

lead to spikes and be further potentiated; depressed synapses less
probably lead to spikes and thus tend to be further depressed.

Potentiation or depression of synapses toward extreme
weights may be useful for processes requiring strong synaptic
competition including elimination of the “wrong” connections,
such as segregation of inputs from two eyes during development
of the visual cortex (Wiesel and Hubel, 1963; Thompson et al.,
1983) or formation of other sensory representations (Aitkin et al.,
1970; Merzenich et al., 1975; Feldman, 2009). However, learning
of complex associations for both declarative and procedural
memories would likely require a broad distribution of synaptic
weights. To achieve this and to keep system susceptible for new
learning, stabilization mechanisms are needed that prevent syn-
apses from runaway potentiation or depression and associated
overexcitability or complete silencing of neurons.

A number of stabilizing mechanisms have been suggested. In
previous research, normalization was explicitly implemented in
the equation for synaptic weight changes (von der Malsburg,
1973) or was achieved by introducing a dependence of the change
on the actual weight, which provides an internal feedback control
of synaptic modifications (Oja, 1982). Later studies expanded the
use of normalization (Elliott and Shadbolt, 2002; Wu and Yama-
guchi, 2006; Finelli et al., 2008) and elaborated tuning of the
learning rules, e.g., by introducing weight-dependence of plastic
changes and/or precise balancing of STDP rules for potentiation
and depression (Bi and Poo, 1998; van Rossum et al., 2000; Ab-
bott and Nelson, 2000; Kempter et al., 2001; Gütig et al., 2003;
Hardingham et al., 2007; Delgado et al., 2010; Gilson and Fukai,
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2011) and activity-dependent regulation of Ca 2� thresholds for
potentiation and depression (Yeung et al., 2004). Total weight of
synaptic inputs to a neuron could be also conserved by local
balancing of potentiation and depression (Royer and Paré 2003).
Some of these mechanisms were related to experimental results,
while others did not have biological correlates.

In our previous work at neocortical synapses in vitro, we de-
scribed a form of heterosynaptic plasticity that can be induced by
intracellular tetanization—a purely postsynaptic protocol with-
out presynaptic stimulation (Volgushev et al., 1994, 2000; Lee et
al., 2012). We hypothesized that this form of heterosynaptic plas-
ticity can serve as a normalizing mechanism and prevent runaway
synaptic dynamics (Volgushev et al., 2000; Chistiakova and Vol-
gushev, 2009). Here we test this hypothesis using a biophysically
constrained neuron model. We show how interaction of different
forms of plasticity—Hebbian and heterosynaptic—may produce
unsaturated distribution of synaptic weights while still allow for
synaptic changes required to form new memories.

Materials and Methods
In vitro experiments
Slice preparation. All experimental procedures used in this study were in
compliance with U.S. National Institutes of Health regulations and were
approved by the Institutional Animal Care and Use Committee of the
University of Connecticut. Details of slice preparation and recording
were similar to those used in previous studies (Volgushev et al., 2000; Lee
et al., 2012). Wistar rats (15–32 d old) of either sex were anesthetized with
isoflurane and decapitated, and the brains were quickly removed and
placed into an ice-cold oxygenated artificial CSF (ACSF) solution con-
taining the following (in mM): 125 NaCl, 25 NaHCO3, 25 glucose, 3 KCl,
1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, bubbled with 95% O2/5% CO2, pH 7.4.
Coronal slices (350 �m thickness) containing visual or auditory cortex
were prepared from the right hemisphere. Slices were allowed to recover
for at least 1 h at room temperature. For recording, individual slices were
transferred to a recording chamber mounted on Olympus microscope
equipped with infrared differential interference contrast (DIC) optics. In

the recording chamber, slices were submerged in oxygenated ACSF at
30 –32°C.

Intracellular recording and synaptic stimulation. Intracellular record-
ings in whole-cell configuration were made from layer 2/3 pyramidal
cells from visual or auditory cortex using patch electrodes (4 –7 M�)
filled with a solution containing the following (in mM): 130 K-glutamate,
20 KCl, 10 HEPES, 10 Na-phosphocreatine, 4 Mg-ATP, 0.3 Na2-GTP, pH
7.4 with KOH. Layer 2/3 pyramidal neurons were selected for recording
using DIC microscopy. Our previous work with biocytin labeling and
morphological reconstruction of recorded neurons demonstrated reli-
ability of pyramidal cell identification using DIC microscopy (Volgushev
et al., 2000).

Two pairs of stimulating electrodes (S1 and S2) were placed in layer 4,
below the layer 2/3 recording site. Stimulation current intensities were
adjusted to evoke monosynaptic EPSPs in the layer 2/3 cell. We used
paired-pulse stimulation protocol with a 50 ms interpulse interval.
Paired stimuli were applied to S1 and S2 in alternating sequence once per
7.5 s, so that each input was stimulated with paired pulses each 15 s.
Small-amplitude hyperpolarizing pulses were applied before S1 stimuli
to access the input resistance. EPSPs in the layer 2/3 cell induced by layer
4 stimulation were recorded during a 10 –12 min control period.
Following the control period, synaptic stimulation was stopped, and
intracellular tetanization was applied to the cell through the record-
ing pipette. Intracellular tetanization consisted of three trains (one
per minute) of 10 bursts (1 Hz) of five pulses (5 ms, 100 Hz, 0.4 –1.1
nA; Fig. 1A). The current intensity was adjusted to evoke four to five
spikes per burst. Following intracellular tetanization, synaptic stim-
ulation was resumed, and EPSPs evoked by the test stimuli were re-
corded for another 30 –50 min.

Database and data analysis. Electrophysiological results presented here
(Figs. 1, 2) include a total of N � 179 inputs to 117 neurons. Among
these, N � 60 inputs to 41 neurons are new data. For the scatter plot in
Figure 2, we also used data from previous publications [N � 43 inputs to
26 neurons (Volgushev et al., 2000; Chistiakova and Volgushev, 2009);
N � 76 inputs to 50 neurons (Lee et al., 2012)]. All inputs included in the
analysis fulfilled the criteria of (1) stability of EPSP amplitudes during
the control period, (2) stability of the membrane potential throughout

Figure 1. Synaptic plasticity induced by intracellular tetanization. A, A scheme of intracellular tetanization experiment. Bursts of short depolarizing pulses (5 ms pulse duration, 5 pulses at 100
Hz; top) were applied through the recording electrode without presynaptic stimulation. The bursts were applied in trains of 10 (1 burst per second; bottom). Intracellular tetanization consisted of
three such trains (1 train per minute). Synaptic responses to test stimuli were recorded before and after the intracellular tetanization. B1, B2, Long-term potentiation (B1) and depression (B2)
induced by intracellular tetanization at two inputs to the same cell. Blue and red traces show averaged membrane potential responses to small steps of hyperpolarization current and to paired-pulse
electric stimuli before (blue) and after (red) the intracellular tetanization. Respective time periods are labeled with blue and red bars between the panels. Time courses show the amplitudes of
individual EPSPs evoked by first the first pulse in the paired-pulse stimulation paradigm. Vertical arrows indicate timing of intracellular tetanization. C, Responses to hyperpolarizing current steps
and paired synaptic stimulation and time course of EPSP amplitude changes in another input that did not change after intracellular tetanization.
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the recording, and (3) stability of the onset latency and kinetics of the
rising slope of the EPSP. EPSP amplitudes were measured as the differ-
ence between the mean membrane potential during two time windows.
The first time window was placed before the EPSP onset, and the second
time window was placed just before the peak of the rising slope of the
EPSP. Amplitude of the second EPSP in paired-pulse stimulation para-
digm was measured using windows of the same duration, but shifted by
the length of interpulse interval (50 ms). Paired-pulse ratio (PPR) was
calculated as the ratio of averaged amplitude of the EPSP evoked by the
second pulse over the averaged amplitude of the EPSP evoked by the first
pulse.

For assessing changes of synaptic transmission, amplitude of EPSPs
evoked by the first stimulus in a pair was used. The magnitude of plastic
changes was calculated as the ratio of average EPSP amplitude after the
tetanization over the average EPSP amplitude during the control period.
The criterion for plasticity was a significant ( p � 0.05, Student’s t test)
change in mean EPSP amplitude between the control and posttetanic
time periods.

Computational model
Model of pyramidal neuron. For all simulations we used an established re-
duced model of a cortical pyramidal cell (Mainen and Sejnowski, 1996;
Timofeev et al., 2000; Bazhenov et al., 2002; Chen et al., 2012). This model
was first proposed as a reduction of a multicompartmental pyramidal cell
model (Mainen and Sejnowski, 1996) and consists of two electrically coupled
compartments, dendritic and axosomatic. The current balance equations for
the two compartments of the model are as follows:

Cm�dVS/dt� � � g�VS � VD� � IS
int; (1)

Cm�dVD/dt� � � gleak�VD � Eleak� � g�VD � Vs� � ID
int � Isyn.

(2)

where Cm is the membrane capacitance, VS and VD are the membrane
potentials in the axosomatic and dendritic compartments, g is conduc-
tance coupling between the compartments, IS

int and ID
int are the sums of

all active currents in the axosomatic and dendritic compartments, re-
spectively, and Isyn is the sum of synaptic currents. Because Na � and K �

conductances in the axosomatic compartment were much stronger than
in the dendrite (Mainen and Sejnowski, 1996), Equation 1 can be rewrit-
ten in a form �dVs/dt � F(VS), where � is a small parameter, and F(VS)
represents normalized axosomatic currents that match the magnitude of
the dendritic currents. Using singular perturbations analysis (Kuznetsov,
1995), it can be shown that the state variable VS quickly reaches the
manifold of slow motion defined by equation F(VS) � 0 and, therefore, is
always at equilibrium state. Thus, Equation 1 can be substituted by the
following:

g�VS � VD� � � IS
int. (3)

Furthermore, through bifurcation analysis, it was shown that the dynam-
ics of the reduced model described by Equations 2 and 3 was equivalent to
the full model (Eqs. 1, 2; for a similar analysis, see Fröhlich and Bazhenov,
2006, their Fig. 3). Thus, this reduced model can be used without losing
the accuracy of simulation. Importantly, the reduced model allows sim-
ulations with time steps that are a few orders of magnitude larger than
that required for a full model. This reduced model can closely match
spiking patterns of different classes of cells and has been successfully used
in many cortical network simulations (Timofeev et al., 2000; Bazhenov et
al., 2002; Fröhlich at al., 2008, 2010; Chen et al., 2012).

In the axosomatic compartment (Ssoma � 1.0 � 10 �6 cm 2), the model
contained a fast Na � current, INa ( gNa � 3000 mS/cm 2), a persistent
sodium current, INa(p) ( gNa(p) � 0.07 mS/cm 2; Alzheimer et al., 1993;
Kay et al., 1998; Astman et al., 2006), and a fast delayed rectifier potas-
sium K � current, IK ( gK � 200 mS/cm 2). In the dendritic compartment
(Sdendr � rSsoma), the model contained a fast Na � current, INa ( gNa � 1.5
mS/cm 2); a persistent sodium current, INa(p) ( gNa(p) � 0.07 mS/cm 2); a
slow voltage-dependent, noninactivating K � current, IKm ( gKm � 0.01
mS/cm 2); a slow Ca 2�-dependent K � current, IKCa ( gKCa � 0.3 mS/
cm 2); a high-threshold Ca 2� current, IHVA ( gHVA � 0.01 mS/cm 2); and
a potassium leak current, IKL � gKL(V � EKL) ( gKL � 0.0025 mS/cm 2).
The membrane capacitance was Cm � 0.75 �F/cm 2, and the leak con-
ductance was gL � 0.033 mS/cm 2. Equilibrium potentials were ENa � 50
mV, EK � �95 mV, Eleak� �68 mV, and ECa � 140 mV. The firing
properties of the model depend on the ratio of dendritic area to axoso-
matic area, r (Mainen and Sejnowski, 1996). We used a model of a
regular-spiking neuron, with r � 165. For all currents, the expressions of
the voltage- and Ca 2�-dependent transition rates are given by Timofeev
et al. (2000) and Chen et al. (2012).

Synaptic currents. One hundred synapses with AMPA-type channels were
located at the dendritic compartment. The synaptic current at each synapse
was simulated by the first-order activation kinetics (Destexhe et al., 1994):

Isyn � Wsyn[O] �V � Esyn�, (4)

d[O]/dt � � �1 � [O]) [T] � �[O], (5)

[T] � AH �t0 � tmax � t� H �t � t0�, (6)

where Wsyn is the strength (weight) of a synapse, [O] is the fraction of
open channels, E syn is the reversal potential (E syn � 0 mV for excitatory
synapses), H(x) is the Heaviside (step) function, t0 is the time instant of
receptor activation, A � 0.5, and tmax � 0.3 ms. The rate constants, � and
�, were � � 1.1 ms �1 and � � 0.19 ms �1. The synaptic weight was
defined in the range between 0 mS/cm 2 and maximum of 0.03 mS/cm 2.
The initial weights were randomly assigned to the 100 synapses from a
Gaussian distribution with the mean 0.015 mS/cm 2 and SD 0.003 mS/
cm 2. Short-term dynamics of synaptic transmission at each synapse were
simulated using a simple phenomenological model (Abbott et al., 1997;
Tsodyks and Markram, 1997; Galarreta and Hestrin, 1998; Timofeev et
al., 2000). According to this model, postsynaptic current is a product of a
maximal synaptic conductance Wsyn and the depression variable D,
which describes the amount of synaptic resources that remain available;
D � 1 � [1 � Di (1 � U )]exp[�(t � ti)/�], where U � 0.07 is the fraction
of resources used per action potential, � � 700 ms is the time constant of
recovery of the synaptic resources, Di is the value of D immediately before
the ith event, and (t � ti) is the time after the ith event.

Spike timing-dependent plasticity. STDP was implemented as in previ-
ous modeling studies (Song et al., 2000; Kempter et al., 2001; Song and
Abbott, 2001). The occurrence, direction and magnitude of synaptic
modifications were determined by the time difference between presyn-
aptic and postsynaptic spikes. If the presynaptic spike occurred before the
postsynaptic spike within the time window for potentiation, the weight
of that synapse increased. If the presynaptic spike followed the postsyn-
aptic spike within the time window for depression, the weight of the
synapse decreased. STDP was described by the following equations:

dWsyn
� � a� (exp 	 � �tpost � tpre�/��
), (7)

dWsyn
� � � a� �exp 	�tpost � tpre�/��
�, (8)

Figure 2. Correlation between EPSP amplitude changes induced by intracellular tetaniza-
tion and initial paired-pulse ratio in neocortical neurons. Data for N � 179 inputs. The sample
includes new data (N � 60 inputs) as well as data used in our previous publications [N � 43
inputs (Volgushev et al., 2000); N � 76 inputs (Lee et al., 2012)].
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In Equations 7 and 8, dWsyn is the change of synaptic strength, a � and a �

are the maximal amplitude of potentiation and depression that could be
induced by a single postsynaptic spike, t post and t pre are the timing of
postsynaptic and presynaptic spikes, and � � and � � are the time con-
stants of potentiation and depression windows. As a standard setting, we
used STDP with symmetrical potentiation and depression windows:
a� � a� � 10�3 mS/cm2 and �� � �� � 20 ms. To explore synaptic
dynamics produced by potentiation-dominated or depression-dominated
STDP, we kept parameters of the depression window constant (a� � 10�3

mS/cm2, �� � 20 ms), but varied parameters of potentiation window (max-
imal magnitude, a� � 0.2 � 10�3 mS/cm2 to 2.5 � 10�3 mS/cm2; time
constant, �� � 5, 10, 20, 30, or 40 ms).

Heterosynaptic plasticity. Heterosynaptic plasticity was implemented
according to the rules derived from our in vitro experiments (Volgushev
et al., 2000; Chistiakova and Volgushev, 2009; Lee et al., 2012). In slice
experiments, induction of heterosynaptic plasticity required a rise of
intracellular [Ca 2�] in the postsynaptic neuron (Lee et al., 2012). This
was implemented in the model by setting a calcium threshold at 0.4 �M in
the standard model (tested range between 0.2 and 0.8 �M). Our experi-
mental results also showed that the effect of heterosynaptic plasticity
depended on the initial state of the synapse: synapses with initially low
release probability have a tendency to be potentiated, while synapses with
initially high release probability tended to be depressed or did not change
after intracellular tetanization (Volgushev et al., 2000; Chistiakova and
Volgushev, 2009; Lee et al., 2012). Furthermore, the probability of
change was higher for the strong or weak synapses but lower for synapses
of intermediate strength (Volgushev et al., 2000; Chistiakova and Volgu-
shev, 2009; Lee et al., 2012; see Results). To implement these depen-
dences, we used the following equations (Eqs. 9, 10) to calculate the
probability of the synaptic change resulted from heterosynaptic plasticity
and the magnitude of synaptic weight change:

P � 3000 	 �Wsyn � Wmax/2�2 � 0.1, (9)

where Wsyn is the current synaptic strength, and Wmax � 0.03 mS/cm 2 is
the maximal synaptic strength. According to Equation 9, P � 0.1 for
synapses with intermediate strength, and P � �0.775 for synapses with
maximal/minimal strength.

The change of synaptic weight dWsyn was calculated according to fol-
lowing equation:

dWsyn � �	�1/	1 � exp �	Wsyn � �0.5 	 wmax�
 	 100�
� � 0.5


� 
 	 0.02� 	 0.0001. (10)

In this equation, dWsyn indicates the change of synaptic strength, and 
 is
a random variable drawn from Gaussian distribution with mean equaling
to zero and SD equal to 3.

To summarize, plastic changes could take place only when postsynap-
tic action potentials were generated. When a spike occurred, the algo-
rithm checked whether postsynaptic [Ca 2�] exceeded the threshold for
heterosynaptic plasticity, and, if yes, it calculated for each synapse the
synaptic weight change dWsyn (Eq. 10) and the probability of change P
(Eq. 9). The probability of change P was compared to a random number
X generated from a uniform distribution from 0 to 1. For P � X, the
synaptic weight changed by dWsyn (Eq. 10).

Mechanisms of induction and expression of plasticity in the model. We
implemented STDP and heterosynaptic plasticity as phenomenological
models, but did not model explicitly intracellular cascades that were
activated during the induction of plasticity, nor intracellular mechanisms
involved in the maintenance of plastic changes. We opted for phenome-
nological plasticity models for two main reasons. First, to explore the
range of STDP parameters for which heterosynaptic plasticity could pre-
vent runaway dynamics of synaptic weights, we needed to change the
magnitude and time constant of STDP windows for potentiation and
depression. Second, modeling of biochemical cascades that mediate the
induction and maintenance of synaptic plasticity is a rapidly developing
field, focused at a single-synapse level (Graupner and Brunel, 2010).
Implementing these models in a neuron with numerous synapses would
make the model too complicated and intractable, and thus preclude

clear-cut interpretation of results. Furthermore, despite large number of
existing models (over 100; Manninen et al., 2010), there is no consensus
on specific details necessary for quantitative simulations at layer 2/3 py-
ramidal neuron synapses.

Induction of heterosynaptic plasticity in our model depended on the
rise of intracellular [Ca 2�] in accordance with experimental data (Lee et
al., 2012). However, available experimental data do not provide an esti-
mate of the threshold of calcium rise. The threshold value used here (0.4
�M in the standard model; tested range between 0.2 and 0.8 �M) corre-
sponded to calcium rise produced in the model by a burst of several
spikes, such as used in intracellular tetanization experiments (Volgushev
et al., 2000; Lee et al., 2012; for comparison of intracellular tetanization to
other plasticity induction protocols and to in vivo activity, see Chistia-
kova and Volgushev 2009). So, effectively, calcium rise above the thresh-
old in our phenomenological model can be considered an indicator of
strong postsynaptic activity.

Changes of synaptic weights (both STDP and heterosynaptic plasticity
induced) were implemented in the model as changes of synaptic efficacy,
and thus were purely postsynaptic. Experimental data indicate that ex-
pression of some forms of plasticity may involve both presynaptic and
postsynaptic mechanisms (Malenka and Bear 2004; Hardingham et al.,
2007; Sjöström et al., 2007), with preferential presynaptic versus postsyn-
aptic contribution depending on initial state of synapses and specifics of
the induction protocol (Larkman et al., 1992; Birtoli and Ulrich 2004;
Seol et al., 2007), and that presynaptic and postsynaptic changes have
differential effects on postsynaptic membrane potential fluctuations
evoked by irregular presynaptic firing (Markram and Tsodyks, 1996;
Tsodyks and Markram, 1997). However, the relative contribution of the
presynaptic versus postsynaptic mechanisms has not been defined quan-
titatively. Introducing this additional undefined parameter would have
complicated interpretation of the results (e.g., runaway dynamics of syn-
aptic efficacy vs. runaway dynamics of the release probability). Indeed,
modeling synaptic plasticity as purely postsynaptic changes of efficacy is
commonly used in computational models (Song et al., 2000; Destexhe
and Marder, 2004; Bazhenov et al., 2005).

Considering all of these factors, as well as the fact that heterosynaptic
plasticity does induce postsynaptic changes, we opted modeling synaptic
changes as changes of efficacy.

Input spike trains. The model neuron received 100 synaptic inputs
from 100 presynaptic neurons. Each synapse was driven by individual
spike train with Poisson distributed interspike intervals. To test the im-
pact of the structured input patterns on dynamics of synaptic weights, we
varied degree of correlation between input spike trains using the follow-
ing procedure (Destexhe and Paré, 1999). First, several (from 2 to 100)
spike train templates with Poisson distributed interspike intervals were
generated. Next, the spike train for each presynaptic neuron was created
by randomly selecting spikes from one of the templates. The degree of
correlation among input spike trains was controlled by the number of
templates used. When the number of templates was increased, the cor-
relation among input spike trains was reduced. In the current study, we
used two templates to produce highly correlated input spike trains (av-
eraged cross-correlation between spike trains, 0.605  0.046), 10 tem-
plates to produce mildly correlated inputs (averaged cross-correlation,
0.348  0.05), and 20 templates to produce the weakly correlated input
spike trains (averaged cross-correlation, 0.336  0.02).

Normality test of synaptic weight distribution. Distributions of synaptic
weights were tested for normality using the D’Agostino–Pearson K 2 test
(D’Agostino et al., 1990) in Matlab. This test first quantifies the skewness
and kurtosis of a sample distribution and then calculates how far these
values deviate from the values expected with a normal distribution. For
each distribution, the test returns a K 2 value (approximation to �2 dis-
tribution). If a sample distribution is close to a normal distribution, the
K 2 value is low; high values of K 2 indicate significant deviation from
normality. Distributions with probability associated to the �2 statistic
higher than 0.05 were identified as normally distributed (Trujillo-Ortiz
and Hernandez-Walls, 2003). This approach provides a goodness-of-
fit measure of deviation of the distribution from a normal distribu-
tion due to either its skewness or kurtosis.
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Results
We studied the effect of intracellular tetanization on synaptic
transmission to layer 2/3 pyramidal neurons in slices of visual and
auditory cortex of rats. Intracellular tetanization consisted of
three trains (one per minute) of 10 bursts (1 Hz), each burst
containing five pulses (duration, 5 ms; frequency, 100 Hz; ampli-
tude, 0.4 –1.1 nA; Fig. 1A). Tetanization was applied to the cell
through the intracellular recording electrode without presynap-
tic stimulation. Thus, plastic changes induced by intracellular
tetanization can be considered analogous to heterosynaptic
changes (Fig. 1A, green question marks), i.e., changes at synapses
that were not activated during a conventional pairing or afferent
tetanization protocol. Figure 1 shows examples of EPSP ampli-
tude changes induced by intracellular tetanization. Response am-
plitudes were stable during control period before the tetanization
(Fig. 1B1,B2,C, periods marked with blue bars, blue averaged
response traces). After the intracellular tetanization (Fig.
1B1,B2,C, the periods marked with red bars and red response
traces), EPSP amplitude could increase (Fig. 1B1), decrease (B2),
or not change (C). Changes of the EPSP amplitude were not
accompanied by changes of the input resistance, as indicated by
stable responses to hyperpolarizing pulses applied before test syn-
aptic stimuli (Fig. 1B1,C). Notably, potentiation and depression
could co-occur at two distinct synapses in one cell after the same
intracellular tetanization (Fig. 1B1,B2). According to our previ-
ous study (Lee et al., 2012), induction of synaptic plasticity by

intracellular tetanization required the rise
of intracellular calcium concentration in
the postsynaptic neuron.

Potentiation was observed in 65 of 179
inputs (36.3%); responses in these inputs
increased to 170.1  56.3% (average �
SD) of the control. Depression was ob-
served in 64 of 179 cases (35.8%); re-
sponses were decreased to 63.3  17.1%
of the control. Remaining inputs (50 of
179, 27.9%) did not change after intracel-
lular tetanization (99.9  8.0% of the con-
trol). Our previous work demonstrated
that the direction and the magnitude of
EPSP amplitude changes induced by in-
tracellular tetanization were correlated
with initial properties of synapses: syn-
apses with initially high PPR, indicative of
low release probability, had a tendency to
be potentiated, while synapses with ini-
tially low PPR, indicative of high release
probability, tended to be depressed or did
not change. Figure 2 further illustrates this
dependence for 179 inputs to 117 pyrami-
dal neurons in layer 2/3 from the visual
and auditory cortex (r � 0.52, p � 0.01).

Thus, our present and previous results
reveal the following properties of synaptic
plasticity induced by postsynaptic intra-
cellular tetanization: (1) Its induction re-
quires a substantial rise of intracellular
calcium concentration. (2) It can lead to
heterosynaptic changes at synapses that
were not active during the induction. (3)
The direction and magnitude of synaptic
changes depended on initial properties of
synapses: synapses with low release prob-

ability (“weak” synapses) had tendency to be potentiated, while
synapses with high release probability (“strong” synapses) had
tendency to be depressed or unchanged. (4) The likelihood of
synaptic changes was low for synapses of intermediate-strength
and high for strong or weak synapses. Specifically, we found that
the occurrence of plastic changes was higher for the inputs with a
PPR below 25% percentile or above 75% percentile (94 and 77%,
respectively) than for inputs with a PPR in the second or third
quartile (72 and 39%). We have hypothesized that a plastic pro-
cess with such properties may serve as a mechanism of stabiliza-
tion of synaptic weights and may prevent runaway dynamics of
synaptic weights. In the following sections, we test this hypothesis
using an established conductance-based model of a cortical py-
ramidal neuron receiving input from 100 synapses (Fig. 3B).
Rules of STDP and heterosynaptic plasticity were implemented in
the model. We then studied the dynamics of synaptic weights
when these plasticity rules were applied separately or combined.

Heterosynaptic plasticity induced by intracellular
tetanization in a model neuron
We first tested the induction of heterosynaptic plasticity in the
model where action potentials were evoked in the postsynaptic
neuron by depolarizing current pulses. The amplitude of depo-
larizing pulses injected into the dendrite of the postsynaptic neu-
ron (Fig. 3B) was adjusted so that each pulse evoked a spike (Fig.
3A, top), and thus the number and frequency of postsynaptic

Figure 3. Simulation of heterosynaptic plasticity in a model neuron. A, Membrane potential trace (top), changes of intracellular
calcium concentration in the dendritic compartment (middle), and changes of synaptic weights (bottom) induced by intracellular
depolarizing pulses. Current pulses were injected into the dendritic compartment of the postsynaptic neuron to evoke action
potentials. Current pulses were applied to evoke single spikes at 1 Hz and then bursts of 5 spikes, with the frequency of spikes within
the burst 50 Hz. Bursts of 50 Hz pulses were repeated six times. The dashed line in the middle panel shows the calcium threshold for
heterosynaptic plasticity (0.4 �M). In the bottom panel, synaptic weights are color coded. Synapses were sorted by their weights
at the beginning of the simulation experiment. Heterosynaptic plasticity led to changes of synaptic weights after bursts of spikes,
but not after single spikes. B, A scheme of a model neuron receiving 100 synaptic inputs to the dendrite. Current pulses to evoke
spikes were injected in the dendrite. C, Distribution of synaptic weights at the beginning (blue) and at the end of experiments (red)
shown in A. Arrows in A indicate time moments when distributions were taken.
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spikes could be controlled precisely. Postsynaptic action poten-
tials evoked at 1 Hz led to a transient, nonaccumulating rise of
intracellular calcium (Fig. 3A, middle), and did not induce
changes of synaptic weights (bottom). Increasing the frequency
of depolarizing pulses and thus evoked spikes to 50 Hz (as used in
intracellular tetanization experiments in slices) led to accumula-
tion of intracellular calcium. By the time of arrival of the second
spike in the 50 Hz burst, intracellular [Ca 2�] was above the
threshold required to induce plasticity (0.4 �M; Fig. 3A, middle,
dashed horizontal line). This triggered heterosynaptic plasticity
and led to a change of synaptic weights. The change of synaptic
weights is evident as a disturbance in the color-coded plot of
synaptic weights against time (Fig. 3A, bottom, around 6 s). Note
that heterosynaptic plasticity in this model is triggered only if a
postsynaptic spike is generated and [Ca 2�]i is above the thresh-
old. The threshold was only exceeded after a burst of spikes, but
an isolated spike was not sufficient to induce a required [Ca 2�]i

rise. This assures that heterosynaptic plasticity is triggered only by
strong postsynaptic activations in accordance with experimental
results. Since there is no available estimate of the absolute level of
calcium rise necessary to induce heterosynaptic plasticity, the rise
above the threshold implemented in the model (0.4 �M in the
standard model; range between 0.2 and 0.8 �M was tested) can be
considered as an indicator of strong postsynaptic activity.

Figure 3 demonstrates that the following properties of het-
erosynaptic plasticity observed in slice experiments were repro-
duced in the model. First, changes of synaptic weights occurred in
the absence of presynaptic activity, so activation of a synapse was
not required to trigger changes of its weight. Second, the direc-
tion of plastic changes depended on the initial synaptic weight. In
the color-coded plot of synaptic weight changes (Fig. 3A), syn-
apses were sorted by their weight at the beginning of the simula-
tion. During the simulation, heterosynaptic plasticity led to a
substitution of colors representing strongest (dark red) and
weakest (dark blue) synapses by colors representing intermediate
synaptic weights. This effect is clearly evident by comparing the
distributions of synaptic weights at the beginning and at the end
of simulation (Fig. 3C). At the end of the simulation, synaptic
weights shifted toward the values in the middle of the range,
which resulted in a narrower final distribution (mean of final
weights, 0.0152  0.0013 mS/cm 2 versus initial weights,
0.0153  0.0031 mS/cm 2). This indicates that strong synapses
were depressed and weak synapses were potentiated by the het-
erosynaptic plasticity.

Heterosynaptic plasticity prevents saturation of synaptic
weights produced by STDP
In agreement with previous results, STDP with symmetrical po-
tentiation and depression windows led to runaway potentiation
of synapses in the model with weakly correlated presynaptic ac-
tivity. In the simulation illustrated in Figure 4, A and B, potenti-
ation and depression windows were symmetrical, with time
constants �� � �� � 20 ms and maximal magnitude a� � a� �
10�3 mS/cm 2 (Fig. 4B, inset). The averaged firing rate of each
presynaptic neuron was 1 Hz, and averaged correlation between
presynaptic spike trains was 0.348  0.05. Synaptic weights
showed clear runaway dynamics in this simulation, gradually in-
creasing to saturation at the maximal value. This dynamic was
due to an intrinsic positive feedback in Hebbian-type learning
rules: an increase of the weight of a synapse increased the proba-
bility that activation of this synapse will lead to spike and thus
increased the probability that this synapse will be be further po-
tentiated. In Figure 4A, after �80 s of simulation, all synaptic

weights were saturated at the maximum. Runaway increase of
synaptic weights was accompanied by an increase of the postsyn-
aptic firing rate and intracellular calcium concentration (Fig.
4A). The postsynaptic firing rate increased from 1.8  2.1 Hz
during the first 10 s of simulation to 6.3  3.1 Hz during the last
10 s. Intracellular [Ca 2�] increased from an average of 0.32 
0.13 �M during the first 10 s to 0.56  0.22 �M during the last 10 s.

Figure 4, C and D, shows results of simulation in the model in
which a mechanism of heterosynaptic plasticity illustrated in Fig-
ure 3 was added. All other parameters—initial distribution of
synaptic weights, presynaptic firing, and STDP rules—were the
same as in the model shown in Figure 4, A and B. In the model
equipped with both STDP and heterosynaptic plasticity, synaptic
weights slightly increased, and their distribution became nar-
rower after 100 s of simulation (0.015  0.0031 at the beginning
versus 0.019  0.001 at the end of simulation; Fig. 4D). However,
none of the synapses expressed runaway dynamics, and none was
saturated. Distribution of synaptic weights remained normal
within the operation range. An increase of the averaged synaptic
weight led to a moderate increase of the firing rate of the postsyn-
aptic neuron from 1.8  2.1 Hz during the first 10 s of simulation
to 2.6  2.3 Hz during the last 10 s, and an increase of averaged
[Ca 2�]i in the postsynaptic neuron from of 0.32  0.13 �M dur-
ing the first 10 s to 0.37  0.14 �M during the last 10 s. Thus,
heterosynaptic plasticity effectively counteracted the runaway
potentiation and prevented saturation of synaptic weights.

In the previous simulation experiment described in Figure 4,
STDP with symmetrical windows for potentiation and depres-
sion (a� � a� � 1 � 10�3 mS/cm 2, �� � �� � 20 ms) was
tested. Next, we asked whether heterosynaptic plasticity can also
prevent runaway depression of synaptic weights. To achieve run-
away decrease of synaptic weights, we used a model with a strong
bias of STDP windows toward depression (Fig. 5A,B). The time
constant for the depression window was increased to �� � 40 ms,
and the maximal depression magnitude was increased to a� �
1.5 � 10�3 mS/cm 2. At the same time, the window for potenti-
ation was narrowed (�� � 5 ms), and the maximum magnitude
of potentiation was decreased to a� � 0.5 � 10�3 mS/cm 2 (Fig.
5B, inset). Synaptic weights progressively decreased in the model
with these settings. However, after �50 s of simulation, decreased
synaptic weights could not induce postsynaptic activity sufficient
to produce any further synaptic changes (Fig. 5A). To compen-
sate for this effect of decreased synaptic weights and to restore the
firing of the postsynaptic neuron, average input firing rates were
increased to 2 Hz. After another 50 s of simulation, presynaptic
activity in individual synapses was further increased to 3 Hz (Fig.
5A). The distribution of synaptic weights at the end of this sim-
ulation expresses clear signs of runaway depression. About 35%
of synapses had zero weight, and the whole distribution was
asymmetrical shifted toward zero (Fig. 5B). As a result of dramat-
ically decreased synaptic weights, activity of the postsynaptic
neuron was essentially abolished. During the last 10 s of simula-
tion, the firing rate was 0.3  0.48 Hz (versus 1.3  1.5 Hz at the
beginning), and averaged postsynaptic calcium concentration
was 0.25  0.043 �M (versus 0.296  0.1 �M at the beginning),
despite a threefold increase of presynaptic firing rate.

When heterosynaptic plasticity was added to this model, dy-
namics of synaptic weights and postsynaptic activity became
completely different from those of the STDP-only model. Synap-
tic weights did not show runaway dynamics. Rather, after a slight
initial decrease from 0.015  0.0031 mS/cm 2 at the beginning to
0.0125  0.0022 mS/cm 2 after 50 s of simulation with 1 Hz in-
puts, they were stabilized at a new balance and changed little
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during further simulation (Fig. 5C). Activity of the postsynaptic
neuron changed in parallel to the change of frequency of its inputs.
The firing rate of the postsynaptic neuron was 0.9  0.88 Hz during
the last 10 s of simulation with presynaptic firing at 1 Hz, 4.4  1.6
Hz during the last 10 s with presynaptic firing at 2 Hz, and 9.2  2.86
Hz during the last 10 s with presynaptic firing at 3 Hz. Averaged
intracellular calcium concentrations in the postsynaptic neuron
were 0.28  0.081 �M, 0.45  0.17 �M, and 0.69  0.23 �M during
these periods, respectively. Thus, heterosynaptic plasticity prevented
both runaway potentiation and runaway depression of synaptic
weights. It exerted a stabilizing effect on synaptic weights, keeping
them within the operation range, away from extreme values, and
normally distributed.

Note that the shape of the final steady-state distribution of
synaptic weights in the models that implement both STDP and
heterosynaptic plasticity depended on the details of plasticity
rules and the initial distribution of synaptic weights. With initial
weights normally distributed around the middle value, and the
rules for heterosynaptic plasticity centered in the range of synap-
tic weights, final distributions were close to normal. However,
skewed final distributions could be also obtained, including
shapes close to Poisson or log-normal distributions, as reported
experimentally (Song et al., 2005) when uniform distribution of

initial weights and heterosynaptic plasticity rules shifted away
from the midpoint weight were used (data not shown). One fur-
ther reason for the highly asymmetrical distribution of experi-
mentally measured synaptic weights, with a large number of zero
weights, could be the presence of silent synapses, at which only
NMDA, but no AMPA, receptors are present (for review, see
Lüscher et al., 2000; Malinow et al., 2000). Pairing presynaptic
activation with strong depolarization may lead to insertion of
AMPA receptors in these synapses, thus “unsilencing” them. It
remains, however, unclear whether postsynaptic firing alone is
sufficient to influence insertion of AMPA receptors in previously
silent synapses, and thus if heterosynaptic plasticity can influence
these synapses.

Stabilizing effect of heterosynaptic plasticity on synaptic
weights is long lasting and robust to changes of input activity
patterns
To test stability of the distribution of synaptic weights resulting
from a combined action of STDP and heterosynaptic plasticity
mechanisms, we performed simulations over longer periods. In
the STDP-only model (Fig. 4A,B), synaptic weights, once they
reached maximum after �70 – 80 s, remained saturated for the
period of simulation (Fig. 6A). In the model equipped with both

Figure 4. Heterosynaptic plasticity prevents saturation of synaptic weights produced by positively biased STDP. A, B, Synaptic activity produced by weakly correlated inputs leads to runaway
dynamics of synaptic weights in a model with symmetrical STDP mechanism. Presynaptic spike trains (N � 100) had an average rate of 1 Hz; cross-correlation of spike trains was 0.348  0.05. STDP
rule with symmetrical potentiation and depression windows (� � � � � � 20 ms, a � � a � � 10 �3 mS/cm 2; B, inset) was implemented at each synapse. A, Membrane potential trace (top),
changes of intracellular [Ca 2�] (middle), and changes of synaptic weights, color coded, with synapses sorted by their synaptic weights at the beginning of the experiment (bottom). B, Distributions
of synaptic weights at the beginning (blue; at 20 ms) and at the end (red; at 100 s) of simulation experiment shown in A. Note runaway dynamics of synaptic weights leading to their saturation at
extreme value (0.03 mS/cm 2) and associated increase of the firing rate of the postsynaptic neuron. C, D, Heterosynaptic plasticity prevents runaway dynamics of synaptic weights and associated
increase of the firing rate. The same model as in A and B is shown, but with the mechanism for heterosynaptic plasticity as described in Figure 3, with the [Ca 2�] threshold 0.4 �M (dashed line) added
to each synapse. All conventions are same as in A and B. Note that synaptic weights are not saturated, but remain normally distributed within the operation rage. Also note that in contrast to the
STDP-only model, postsynaptic firing rate does not express a dramatic increase.
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STDP and heterosynaptic plasticity, synaptic weights reached a
new equilibrium state after �40 –50 s of simulation (Fig. 6B).
After that, synaptic weights exhibited some fluctuations, but re-
mained normally distributed around the new equilibrium, with
little changes of the mean and SD (0.0191  0.001 mS/cm 2,
0.0192  0.0008 mS/cm 2, 0.0195  0.0009 mS/cm 2, 0.0189 
0.0008 mS/cm 2, and 0.0193  0.0008 mS/cm 2 at 100, 200, 300,
400, and 500 s after simulation began, respectively; Fig. 6B, bot-
tom). In simulations with the [Ca 2�]i threshold for heterosynap-
tic plasticity increased from the standard setting of 0.4 �M to 0.8
�M, runaway dynamics of synaptic weights were still prevented
(Fig. 6C). Synaptic weights remained within the operation range,
away from extreme values. Their distribution remained normal,
although with higher values of the mean and SD (0.0243  0.0012
mS/cm 2, 0.0252  0.0012 mS/cm 2, 0.0281  0.0014 mS/cm 2,
0.0266  0.0015 mS/cm 2, and 0.0257  0.0014 mS/cm 2 at 100,
200, 300, 400, and 500 s after simulation began, respectively; Fig.
6C). Furthermore, with a higher threshold of heterosynaptic

plasticity, synaptic weights expressed larger fluctuation around
the new equilibrium. Indeed, the distributions of synaptic
weights in Figure 6, B and C, at time moments 100, 200, 300, 400,
and 500 s after the beginning of simulation were significantly
different (two-sample t test, p � 0.05).

Next, we studied effects of STDP alone or in combination with
heterosynaptic plasticity on dynamics of synaptic weights under
conditions of different levels of presynaptic activity. Figure 7A
shows time histograms of the total number of spikes in all pre-
synaptic neurons firing at average rates of 1, 2, and 3 Hz. At all
three levels of presynaptic activity, STDP with symmetrical win-
dows (�� � �� � 20 ms, a� � a� � 1 � 10�3 mS/cm 2; Fig. 7C,
inset) produced runaway potentiation of synaptic weights (Fig.
7B,C). Saturation of all synaptic weights at the maximum value
occurred after �70 – 80 s of simulation with 1 Hz of presynaptic
activity, but much faster, after �15–20 s, at higher levels of pre-
synaptic activity (Fig. 7B). When heterosynaptic plasticity was
added to this model, runaway dynamics of synaptic weights were

Figure 5. Heterosynaptic plasticity prevents runaway dynamics of synaptic weights produced by STDP with a negative bias. A, B, STDP with a negative bias leads to runaway dynamics of synaptic
weights toward zero during background activity produced by weakly correlated inputs. Presynaptic spike trains (N � 100) at an average rate of 1 Hz during first 50 s of simulation, 2 Hz during
50 –100 s, and 3 Hz during 100 –150 s are shown. Cross-correlation of spike trains throughout the simulation was 0.348  0.05. STDP rule with negative bias (� � � 5 ms, a � � 0.5 � 10 �3

mS/cm 2, � � � 40 ms, a � � 1.5 � 10 �3 mS/cm 2; B, inset) was implemented at each synapse. A, Membrane potential trace (top), changes of intracellular [Ca 2�] (middle), and changes of
synaptic weights, color coded, with synapses sorted by their synaptic weights at the beginning of the experiment (bottom). B, Distributions of synaptic weights at the beginning (blue; at 20 ms) and
at the end (red; at 150 s) of the simulation experiment shown in A. Note runaway dynamics of synaptic weights leading to saturation at zero of about 40% of synapses, and associated dramatic
decrease of postsynaptic firing rate despite an increase of presynaptic firing. C, D, Heterosynaptic plasticity prevents runaway synaptic dynamics toward zero weights and the associated decrease of
postsynaptic firing. The same model as in A and B is shown, but with the mechanism for heterosynaptic plasticity as described in Figure 3, with the [Ca 2�] threshold 0.4 �M (dashed line) added to
each synapse. All conventions are same as in A and B. Note that synaptic weights are not saturated, but remain normally distributed within the operation range. Also note that in contrast to
STDP-only model, postsynaptic firing rate does not express a dramatic decrease, but increases in parallel with increased presynaptic firing.
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prevented at all three levels of presynaptic activity (Fig. 7F,G).
The frequency of presynaptic firing affected the time required to
reach the new equilibrium of synaptic weights, but in neither of
conditions were synaptic weights saturated. In all three cases,
synaptic weights remained normally distributed within the oper-
ation range (Fig. 7G).

STDP with a strong negative bias (�� � 5 ms, a� � 0.5 �
10�3 mS/cm 2, �� � 40 ms, a� � 1.5 � 10�3 mS/cm 2; Fig. 7G,
inset) produced runaway depression and saturation of a portion
of synaptic weights at zero when the neuron received intermedi-
ate (2 Hz) and high (3 Hz) levels of input activity (Fig. 7D,E).
With a low rate of presynaptic firing, synaptic weights were only
shifted to the left, but remained unsaturated. This effect was due
to a dramatic decrease of postsynaptic activity (see Fig. 5 and
related text): synapses did not change when weakened inputs
were not able to evoke spikes. These abnormal kinds of dynamics
of synaptic weights leading either to a ceased postsynaptic activity
or to runaway depression were prevented when heterosynaptic
plasticity was added to the model (Fig. 7H). With all three levels
of presynaptic firing, synaptic weights remained unsaturated
and normally distributed (Fig. 7I ). With higher rates of pre-
synaptic inputs (2 or 3 Hz), the new equilibrium was reached
faster, and the resulting distributions of synaptic weights were
narrower (0.0111  0.0022 mS/cm 2 at 1 Hz of inputs,
0.0114  0.0009 mS/cm 2 at 2 Hz of inputs, 0.0122  0.00078
mS/cm 2 at 3 Hz of inputs) and significantly different (two
sample t test, p � 0.05).

Results presented in Figures 6 and 7 show that the stabilizing
effect of heterosynaptic plasticity on synaptic weights is long last-
ing and robust with respect to changes of the calcium threshold
for heterosynaptic plasticity and the level of presynaptic activity.

Heterosynaptic plasticity can prevent runaway dynamics of
synaptic weights for a broad range of STDP parameters
How effective is heterosynaptic plasticity in preventing runaway
synaptic dynamics caused by different STDP rules? To address
this question, we kept the LTD component of STDP unchanged
(�� � 20 ms, a� � 1 � 10�3 mS/cm 2) and systematically varied
the time constant of STDP potentiation window from �� � 5 ms
to �� � 40 ms (5, 10, 20, 30, 40 ms) and its maximal magnitude
from a� � 2 � 10�4 mS/cm 2 to a� � 2.5 � 10�3 mS/cm 2. The
tested sets of STDP parameters (55 combinations in total) thus
included symmetrical rules where windows for potentiation and
depression were the same, rules that were biased toward potenti-
ation with larger magnitude and/or duration of the window for
potentiation than for depression, as well as rules that were biased
toward depression with smaller magnitude and/or duration of
the potentiation window than of the depression window. Figure
8A shows examples of STDP rules for different time constants
and different maximal magnitudes of the potentiation window.

In the models without heterosynaptic plasticity, STDP with
most of these parameter settings produced runaway dynamics of
synaptic weights. For 45 of 55 parameter combinations, a signif-
icant net increase of the mean synaptic weight after 100 s of

Figure 6. Normalizing effect of heterosynaptic plasticity on synaptic weights is long lasting and operates over a range of calcium thresholds. A, Weakly correlated inputs express runaway
dynamics and lasting saturation of synaptic weights in a model with symmetrical STDP. Simulation had the same parameters as in Figure 4A (100 presynaptic spike trains at average rate of 1 Hz;
cross-correlation was 0.3480.05; symmetrical STDP rule � ��� ��20 ms; a ��a ��10 �3 mS/cm 2; bottom, inset), but was run over 500 s. Changes of intracellular [Ca 2�] (top), changes
of synaptic weights, color coded, with synapses sorted by their synaptic weights at the beginning of experiment (middle) and distributions of synaptic weights at the beginning of the experiment
(black; 20 ms) and after 100, 200, 300, 400, and 500 s of simulation, as indicated (bottom). Note that STDP produced runaway dynamics of synaptic weights leading to their saturation. Once saturated
after about 80 s, synaptic weights remained at the extreme (0.03 mS/cm 2). B, C, Heterosynaptic plasticity prevents runaway dynamics of synaptic weights and leads to a lasting stabilization of
synaptic weight distribution within an operation range. The same model as in A is used, but with the mechanism for heterosynaptic plasticity (as described in Fig. 3) with [Ca 2�] threshold 0.4 �M

(B) or 0.8 �M (C) added to each synapse. Calcium thresholds are shown as dashed lines over the plots of [Ca 2�] change. Other conventions are as in A. Note that synaptic weights are not saturated,
but remain normally distributed within the operation rage. Also note that the final distribution of synaptic weights depends on calcium threshold of heterosynaptic plasticity.
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simulation was observed. In 33 of these 45 cases, synaptic weights
were saturated at the maximum, so that their mean was at or close
to the upper extreme (Fig. 8B, left, points at or close to 0.03
mS/cm 2). In the remaining 12 cases in which the net potentiation
was observed, but synaptic weights were not saturated after 100 s
of simulations, longer simulation periods (or higher frequency of
presynaptic inputs) were required for synaptic weights to become
saturated at the maximum (data not shown). To further docu-
ment the anomalous distributions of synaptic weights produced
by runaway dynamics, we tested final distributions for their de-
viation from a normal distribution due to their skewness or kur-
tosis using the D’Agostino–Pearson K 2 test (see Materials and
Methods). Figure 8C (left) shows that the final distributions of
synaptic weights exhibit significant deviation from normality af-
ter 100 s of simulations with a� � 0.6 � 10�3 mS/cm 2 and/or ��

� 10 ms.
Addition of heterosynaptic plasticity to the models effectively

prevented runaway dynamics of synaptic weights for the tested

range of STDP parameters. When a model neuron was equipped
with STDP and heterosynaptic plasticity, synaptic weights
reached a new balance after 20 –50 s of simulation, and remained
normally distributed around these new equilibriums. The mean
of the final distributions was shifted from the original value, but
never reached the extremes (Fig. 8B, right). Final synaptic weights
remained normally distributed in these simulations, as indicated
by low K 2 values (Fig. 8C, right). This condition was maintained
in longer simulations (Fig. 6B,C).

Results presented in Figure 8 show that heterosynaptic plas-
ticity can counteract runaway trends caused by STDP plasticity
rules and stabilize the operation of neurons over a broad range of
STDP parameters.

Synaptic competition in the model with
heterosynaptic plasticity
Results of the modeling experiments described above show that
heterosynaptic plasticity can effectively prevent runaway dynam-

Figure 7. Normalizing effect of heterosynaptic plasticity on synaptic weights operates over a range of presynaptic activity rates. A, Cumulative histograms of presynaptic spike trains (N � 100)
at average rates of 1 Hz (left), 2 Hz (middle), and 3 Hz (right) during a 100 simulation period. Bin size, 50 ms. In all three cases, cross-correlation of presynaptic spike trains was 0.348  0.05. B,
Changes of synaptic weights in a model with a symmetrical STDP rule (� ��� �� 40 ms, a �� a �� 1.5 � 10 �3 mS/cm 2; C, inset) subject to synaptic bombardment produced by spike trains
at 1 Hz (top), 2 Hz (middle), and 3 Hz (bottom). Synaptic weights are color coded, and synapses were sorted by their initial weights at the beginning of a simulation. C, Distributions of synaptic weights
at the beginning (black bars) and at the end (100 s, color coded) of simulations from B. Note runaway dynamics of synaptic weights and their saturation at the highest value (0.03 mS/cm 2). D, E,
Dynamics of synaptic weights in a model with a symmetric STDP rule as in B and C, but with added heterosynaptic plasticity as described in Figure 3, with [Ca 2�] threshold 0.4 �M. Note that synaptic
weights remain normally distributed and unsaturated (E). Conventions are as in B and C. F, G, Changes of synaptic weights (F ) and their distributions at the beginning and at the end of simulations
with negatively biased STDP (� � � 5 ms, a � � 0.5 � 10 �3 mS/cm 2, � � � 40 ms, a � � 1.5 � 10 �3 mS/cm 2; G, inset). Conventions are as in B and C. H, I, Dynamics of synaptic weights
in a model with negatively biased STDP rule as in F and G, but with added heterosynaptic plasticity as described in Figure 3, with [Ca 2�] threshold 0.4 �M. Note that synaptic weights remain normally
distributed and unsaturated (I ). Conventions are as in B and C.
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ics of synaptic weights. Next, we asked whether this stabilizing
effect of heterosynaptic plasticity still leaves room for synaptic
competition. We segregated synaptic inputs to a model neuron
into two groups. The first group (two-thirds of all synapses) con-
sisted of 66 synapses that received weakly correlated input spike
trains (average cross-correlation between spike trains, 0.336 
0.02). The second, smaller, group (one-third of all synapses) con-
sisted of 34 synapses from neurons with highly correlated spike
trains, with average cross-correlation between spike trains
0.605  0.046 throughout the simulation period. In both groups,
presynaptic neurons fired at an average frequency of 1 Hz, and
synaptic weights had the same initial distribution. In the STDP-
only model, synapses receiving highly correlated inputs were rap-
idly potentiated, and their weights saturated at the maximal value
(Fig. 9A,B). Synapses receiving weakly correlated inputs ex-
pressed little plasticity, and their distribution essentially did not
change after 200 s of simulation (Fig. 9A,B). In the model with
both STDP and heterosynaptic plasticity, final synaptic weights
of synapses from the two groups formed two compact and clearly
separated distributions (Fig. 9C,D). Segregation of synaptic
weights of two groups of synapses was a robust phenomenon,
observed for different sizes of the groups (e.g., 30, 50, and 70
synapses out of 100 expressing high correlation), different values
of input correlations in the “high” correlation group (averaged
correlation between spike trains, 0.61 or 0.99), and zero or differ-
ent levels of correlation in the “low” correlation group, and also

in simulations where two groups of inputs had same averaged
correlation but differed by their frequency, e.g., 1 versus 3 or 5 Hz
(data not shown). In contrast to the STDP-only model, in none of
these simulations did the synapses express runaway dynamics,
but all synaptic weights remained within the operation range
(Fig. 9C,D). Because the inputs were not saturated, they have
preserved the ability for further learning. Switching to the input
with the same (high) level of correlation for all synapses led to
slow decay of the weight differences between the groups. Chang-
ing the pattern of input to the model with heterosynaptic plastic-
ity (e.g., high correlation of a different, “new” group of synapses)
led to redistribution of synaptic weights. The new group of highly
correlated inputs acquired higher weights, whereas the weights of
inputs with lower correlation decreased (data not shown).

Thus, although heterosynaptic plasticity effectively counter-
acts runaway dynamics of synaptic weights, it does not preclude
activity-dependent plasticity: Synapses from presynaptic neurons
that fire together (high-correlated inputs) acquire higher weights
than synapses from presynaptic neurons that exhibit low-
correlated firing.

Discussion
In this study, we present experimental data on heterosynaptic
plasticity in two cortical areas, visual and auditory, and we de-
velop a realistic model of a cortical cell driven by synaptic inputs
to explore interaction between heterosynaptic plasticity and

Figure 8. Heterosynaptic plasticity prevents runaway dynamics of synaptic weights over a broad range of STDP parameters. A, Examples of potentiation windows in STDP rules, illustrating the
range of tested parameters. Top, STDP potentiation windows with the same maximal magnitude of potentiation a � � 10 �3 mS/cm 2, but different time constants, � � � 5, 10, 20, 30, 40 ms.
Bottom, STDP potentiation windows with the same time constant, � �� 20 ms, but different maximal magnitudes, a �� 0.2 � 10 �3 to a �� 2.5 � 10 �3 mS/cm 2, as indicated. In this series
of simulations, the depression window of STDP was kept constant (a � � 10 �3 mS/cm 2; � � � 20 ms), so the range of tested parameters of potentiation window a �, � � covered positively
biased, negatively biased, and symmetrical STDP rules. B, Each data point shows the mean synaptic weight of 100 synapses after 100 s of simulation, for different values of a � (x-axes) and � � (color
coded, as indicated). Black circle symbols connected by a dashed line show the mean of the initial distribution of synaptic weights that was identical in all simulations. In all simulations, presynaptic
spike trains had mean rate of 1 Hz, with 0.348  0.05 correlation. Left, Results after 100 s simulations with STDP only. Right, Results after 100 s simulations with heterosynaptic plasticity (as
described in Fig. 3) in addition to STDP. Note that in simulations with the STDP-only model, synaptic weights were most often saturated at maximal value (0.03 mS/cm 2). In contrast, in simulations
with STDP and heterosynaptic plasticity, synaptic weights were not saturated. C, Each box in the grids shows the D’Agostino–Pearson K 2 test for normality of synaptic weight distribution after 100 s
of simulations with different STDP potentiation windows, with a � and � � as indicated on the x- and y-axes. The same data as in B were used for this plot. Left, Results after 100 s simulations with
STDP only. Right, Results after 100 s simulations with heterosynaptic plasticity (as described in Fig. 3) in addition to STDP. Note that in STDP-only models, distribution of synaptic weights after 100 s
of simulation deviates from normal (K 2 values above 50) for a broad range of a � and � �. In contrast, in the models with STDP and heterosynaptic plasticity, distribution of synaptic weights
remained normal over the whole range of tested a � and � � values.
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STDP. We show that direction and magnitude of heterosynaptic
plastic changes in vitro depend on initial properties of synapses.
Using a conductance-based model, we show that STDP operating
alone on the input synapses to the cell driven by correlated spike
trains often leads to unstable synaptic weight dynamics: a slight
bias of STDP rules toward LTP or LTD triggers runaway dynam-
ics with synaptic weights evolving toward the maximum or to-
ward zero. When parameters tuned by experimental data were
implemented in the model, heterosynaptic plasticity prevented
the runaway dynamics and created a stable, unimodal and bal-
anced distribution of synaptic weights for a broad range of STDP
parameters.

Plasticity at nonstimulated synapses:
heterosynaptic plasticity
Conventional forms of LTP and LTD can be induced by afferent
tetanization (Bliss and Lomo, 1973) or pairing synaptic stimula-
tion with postsynaptic spikes. The associative, Hebbian-type syn-
aptic plasticity is triggered by the rise of intracellular [Ca 2�]
(Malenka et al., 1988; Bliss and Collingridge, 1993), whereby fast,
large-amplitude [Ca 2�]i increases induce potentiation, but
slower and low-amplitude Ca 2� rises induce depression (Bienen-
stock et al., 1982; Lisman, 1989; Hansel et al., 1997; Ismailov et al.,
2004). This plasticity is homosynaptic: it occurs at the synapses
that were active during the induction protocol. However, [Ca 2�]i

rises are not restricted to the activated synapses, but take place
also at synapses, which were not active during the plasticity in-
duction, e.g., due to bursts of backpropagating action potentials
(Yuste and Denk, 1995; Schiller et al., 1998). This [Ca 2�]i in-
crease can lead to plasticity at nonactive synapses— heterosynap-
tic plasticity, often also referred to as nonassociative plasticity.

Heterosynaptic LTD was found to accompany homosynaptic
LTP (Lynch et al., 1977). At short distances, the input specificity
of LTP breaks down, and a pairing protocol leads to LTP in a local
population of synapses, including those not activated during the

induction (Bonhoeffer et al., 1989; Kossel et al., 1990; Engert and
Bonhoeffer, 1997), and even synapses at neighboring neurons
(Schuman and Madison, 1994). Heterosynaptic LTP at short dis-
tances and LTD at longer distances result in a Mexican hat-like
profile of plastic changes around the activated synapses (White et
al., 1990; Royer and Paré, 2003), resembling kind of lateral inhi-
bition in synaptic plasticity space.

LTP or LTD can be induced even without synaptic activation,
by photolytic release of caged Ca 2� in neurons (Neveu and
Zucker, 1996; Yang et al., 1999), or intracellular tetanization—
bursts of postsynaptic action potentials without presynaptic
stimulation (Kuhnt et al., 1994; Volgushev et al., 1994, 1997,
1999, 2000; Chistiakova and Volgushev, 2009; Lee et al., 2012).
Since neither protocol involves synaptic stimulation during the
induction, plasticity at any cell’s synapse can be considered het-
erosynaptic. These forms of heterosynaptic plasticity share some
common properties with homosynaptic plasticity. They operate
on the same time scale, are rapidly induced (within seconds or
minutes), and are long lasting. Induction of both homosynaptic
and heterosynaptic plasticity requires [Ca 2�]i rise, and thus
strong postsynaptic activity. This may activate retrograde signal-
ing via NO-dependent pathways (Volgushev et al., 2000; Lee et
al., 2012), leading to both presynaptic and postsynaptic changes.
Involvement of common biochemical pathways is further sup-
ported by the partial occlusion of the induction of homosynaptic
and heterosynaptic plasticity (Kuhnt et al., 1994; Neveu and
Zucker, 1996; Volgushev et al., 1999; Yang et al., 1999). An im-
portant feature that distinguishes heterosynaptic plasticity is that
its induction does not require activation of that particular syn-
apse, but can be triggered by Ca 2� rise produced by activation of
other synapses. It remains to be elucidated how the rise of [Ca 2�]i

may trigger both input-specific homosynaptic changes as well as
cell-wide heterosynaptic changes. One possibility is that multi-
ple sources of intracellular calcium create differential spatial dis-
tribution of intracellular calcium (Yasuda et al., 2003; Bloodgood

Figure 9. Segregation of synaptic weights of strongly versus weakly correlated inputs. A model neuron received input from N � 100 presynaptic neurons firing at average frequency of 1 Hz. Spike
trains of 66 presynaptic neurons (inputs 1 to 66) were weakly correlated (cross-correlation, 0.336  0.02); spike trains of 34 presynaptic neurons (inputs 67 to 100) were strongly correlated
(cross-correlation, 0.605  0.046). A, C, Membrane potential of a model neuron (top) and dynamics of synaptic weights of N � 66 weakly correlated inputs (synapses 1– 66) and N � 34 strongly
correlated inputs (synapses 67–100) in the model with STDP only (A) and the model with STDP and heterosynaptic plasticity (C). B, STDP rule used in the simulations (top): � � � � � � 20 ms;
a � � a � � 10 �3 mS/cm 2. Distributions of synaptic weights (bottom) at the beginning (blue bars) and at the end (red) of simulations from A, for the groups of weakly correlated inputs (1– 66)
and strongly correlated inputs (67–100). Note runaway dynamics of synaptic weights and their saturation at the highest value (0.03 mS/cm 2) for the group of strongly correlated inputs. D,
Distributions of synaptic weights (color bar) at the beginning (blue) and at the end (red) of simulation in C, with STDP and heterosynaptic plasticity for the groups of strongly and weakly correlated
inputs.
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and Sabatini, 2007), leading to preferential activation of location-
specific calcium sensors. Another possibility is that homosynap-
tic and heterosynaptic plasticity are triggered by different [Ca 2�]i

levels. In addition, synapses may have differential predispositions
to undergo potentiation or depression or do not change (Abra-
ham and Bear, 1996; Volgushev et al., 1997), whereby strong
calcium increase may preferentially trigger respective processes.
Weight dependence of heterosynaptic (Volgushev et al., 2000;
Chistiakova and Volgushev 2009; Lee et al., 2012) and homosyn-
aptic plasticity (Bi and Poo 1998; van Rossum et al., 2000; Hard-
ingham et al., 2007) lends support for that latter possibility.

STDP and runaway synaptic dynamics
STDP is experimentally well-characterized form of plasticity that
is broadly used in computational models of learning and devel-
opmental processes (Miller, 1996; Kempter et al., 1999, 2001;
Song et al., 2000; van Rossum et al., 2000; Rubin et al., 2001; Song
and Abbott 2001; Finelli et al., 2008). However, STDP and other
conventional Hebbian-type plasticity rules are prone to produce
runaway dynamics of synaptic weights and neuronal firing. Po-
tentiated synapses have higher probability to lead to spikes and
thus to be further potentiated, while depressed synapses less
probably evoke spikes and thus tend to be further depressed.
Mechanisms supporting runaway dynamics of synaptic weights
combined with strong synaptic competition (Miller and MacKay
1993; Miller, 1996) are useful for formation of sensory represen-
tations (Wiesel and Hubel, 1963; Aitkin et al., 1970; Merzenich et
al., 1975; Thompson et al., 1983; Feldman, 2009) and other “re-
wiring” processes. However, during learning processes that do
not require elimination of synapses but are mediated by more
subtle synaptic changes, stabilization mechanisms preventing
runaway dynamics of plastic synapses toward extreme weights
need to be in place.

Possible mechanisms preventing runaway synaptic dynamics
Local balancing of synaptic weights was suggested as one mech-
anism preventing runaway dynamics. In the hippocampus
(White et al., 1990) and amygdala (Royer and Paré 2003), poten-
tiation of the synapses activated during afferent tetanization was
accompanied by the depression of neighboring synapses and vice
versa. In the resulting Mexican hat-type profile of plastic changes,
potentiation and depression can balance each other, so that net
synaptic weight is preserved. Signal for this process is most prob-
ably local [Ca 2�]i rise and its gradient. Potentiation is induced at
and around the stimulated synapses experiencing maximal
[Ca 2�]i rise (Miyakawa et al., 1992; Magee and Johnston, 1997;
Stuart and Häusser, 2001; Nevian and Sakmann, 2006), depres-
sion is induced at somewhat distant sites experiencing smaller
[Ca 2�]i rises, and no changes occur yet more distantly, where
[Ca 2�]i does not reach plasticity threshold (Bienenstock et al.,
1982; Lisman, 1989; Yang et al., 1999).

Several mechanisms suggested to prevent the runaway synap-
tic dynamics are based on adjustment of learning rules per se.
These include weight dependence, so that weaker synapses po-
tentiate more while stronger synapses express less potentiation,
and in the limit even depress (Bi and Poo, 1998; van Rossum et al.,
2000; Hardingham et al., 2007), and/or precise balancing of
STDP rules for potentiation and depression (Abbott and Nelson,
2000; van Rossum et al., 2000; Kempter et al., 2001; Gütig et al.,
2003; Morrison et al., 2007; Babadi and Abbott, 2010; Delgado et
al., 2010; Gilson and Fukai, 2011). It was rigorously shown that
STDP can lead to stabilization of the mean firing rate of the
postsynaptic neuron if the integral of the learning window is

negative (Kempter et al., 2001). However, experimental evidence
shows a great variety of the duration and magnitude of STDP
windows for potentiation and depression (Nishiyama et al., 2000;
Sjöström et al., 2001; Zhou et al., 2005; Haas et al., 2006; Feldman,
2009). Our simulation results show that STDP does not induce
runaway synaptic dynamics only within a very narrow range of
potentiation and depression windows. Because of these strict re-
quirements, such a mechanism is unlikely to be a general tool for
counteracting runaway dynamics, although it may work at some
synapses.

Cell-wide mechanisms that can affect all, or most of, plastic
synapses of a cell can counteract the runaway synaptic dynamics
in a most robust way. Cell-wide synaptic weight normalization is
commonly used in simulations of learning processes in neurons
and neuronal networks (von der Malsburg, 1973; Elliott and
Shadbolt, 2002; Wu and Yamaguchi, 2006; Finelli et al., 2008). A
previously suggested mechanism involves regulation of the Ca 2�

thresholds for potentiation or depression via a slow, activity-
dependent homeostatic regulation of [Ca 2�]i levels (Yeung et al.,
2004). Our results show that heterosynaptic plasticity, which op-
erates as cell-wide mechanism due to its Ca 2� dependence, can
rapidly and effectively prevent runaway dynamics of synaptic
weights over a broad range of STDP parameters.

Our results show that runaway potentiation or depression in
unbalanced STDP-only models disturbs input– output relations,
leading to overreactivity or complete silencing of neurons. Het-
erosynaptic plasticity counteracts these effects by preventing the
runaway dynamics of synaptic weights on a single-cell level. For a
more robust control of neuronal activity, including conditions of
lasting changes of the input level, mechanisms operating on the
longer time scale at the network level would be required, such as
homeostatic scaling of synaptic weights by overall level of post-
synaptic activity (for review, see Turrigiano, 2008; Vitureira et al.,
2012).

Outlook
Our results show that the net effect of correlated activity on syn-
aptic weights depends on the relative strength of STDP and het-
erosynaptic plasticity. This suggests an interesting possibility that
relative contribution of competition versus balancing mecha-
nisms, and thus susceptibility of synapses to extreme potentiation
or depression, can be fine-tuned by upregulation or downregu-
lation of heterosynaptic plasticity. This kind of regulation may be
one of the mechanisms involved in changing susceptibility of
synapses for plasticity during wake–sleep cycles. Less heterosyn-
aptic plasticity during waking may “allow” more room for STDP-
related synaptic changes, including polarization of synaptic
weights, while more heterosynaptic plasticity during sleep may
lead to restoration of an overall balance of synaptic weights,
though some of the changes may still be kept or strengthened due
to repetition of specific activity patterns during slow-wave sleep,
in a process of memory replay (Ji and Wilson, 2007; Peyrache et
al., 2009). Indeed, our results show that despite the normalizing
effect of heterosynaptic plasticity, synapses from neurons ex-
pressing higher level of correlation, such as neurons firing in
synchrony, can still acquire and maintain higher weights.

To conclude, our study predicts that heterosynaptic plasticity
can effectively counteract runaway dynamics of synaptic weights
produced by STDP, and thus substantially broaden the range of
possible STDP rules that are compatible with normal operation
of neuronal networks.
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Lüscher C, Nicoll RA, Malenka RC, Muller D (2000) Synaptic plasticity and
dynamic modulation of the postsynaptic membrane. Nat Neurosci 3:545–
550. CrossRef Medline

Lynch GS, Dunwiddie T, Gribkoff V (1977) Heterosynaptic depression: a

15928 • J. Neurosci., October 2, 2013 • 33(40):15915–15929 Chen et al. • Heterosynaptic Plasticity and Synaptic Dynamics

http://dx.doi.org/10.1038/81453
http://www.ncbi.nlm.nih.gov/pubmed/11127835
http://www.ncbi.nlm.nih.gov/pubmed/8985017
http://dx.doi.org/10.1016/S0166-2236(96)80018-X
http://www.ncbi.nlm.nih.gov/pubmed/8658594
http://www.ncbi.nlm.nih.gov/pubmed/5439345
http://www.ncbi.nlm.nih.gov/pubmed/8381170
http://dx.doi.org/10.1523/JNEUROSCI.4907-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16571753
http://dx.doi.org/10.1371/journal.pcbi.1000961
http://www.ncbi.nlm.nih.gov/pubmed/12351744
http://dx.doi.org/10.1016/j.neuron.2005.03.022
http://www.ncbi.nlm.nih.gov/pubmed/15882647
http://www.ncbi.nlm.nih.gov/pubmed/9852584
http://www.ncbi.nlm.nih.gov/pubmed/7054394
http://dx.doi.org/10.1523/JNEUROSCI.0795-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15163685
http://dx.doi.org/10.1038/361031a0
http://www.ncbi.nlm.nih.gov/pubmed/8421494
http://dx.doi.org/10.1016/j.conb.2007.04.003
http://dx.doi.org/10.1073/pnas.86.20.8113
http://www.ncbi.nlm.nih.gov/pubmed/2813381
http://dx.doi.org/10.1146/annurev.neuro.31.060407.125639
http://www.ncbi.nlm.nih.gov/pubmed/18275283
http://dx.doi.org/10.1113/jphysiol.2012.227462
http://www.ncbi.nlm.nih.gov/pubmed/22641778
http://dx.doi.org/10.1007/s00221-009-1859-5
http://www.ncbi.nlm.nih.gov/pubmed/19499213
http://dx.doi.org/10.1038/nn.2479
http://www.ncbi.nlm.nih.gov/pubmed/20098420
http://dx.doi.org/10.1080/00031305.1990.10475751
http://dx.doi.org/10.1523/JNEUROSCI.3068-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/21106811
http://dx.doi.org/10.1038/nature03011
http://www.ncbi.nlm.nih.gov/pubmed/15483600
http://www.ncbi.nlm.nih.gov/pubmed/10200189
http://dx.doi.org/10.1007/BF00961734
http://dx.doi.org/10.1162/089976602753712954
http://www.ncbi.nlm.nih.gov/pubmed/12020448
http://dx.doi.org/10.1038/40870
http://www.ncbi.nlm.nih.gov/pubmed/9230437
http://dx.doi.org/10.1146/annurev.neuro.051508.135516
http://www.ncbi.nlm.nih.gov/pubmed/19400721
http://dx.doi.org/10.1371/journal.pcbi.1000062
http://dx.doi.org/10.1103/PhysRevE.74.031922
http://www.ncbi.nlm.nih.gov/pubmed/17025682
http://dx.doi.org/10.1523/JNEUROSCI.4263-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18272691
http://dx.doi.org/10.1523/JNEUROSCI.1239-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20702704
http://dx.doi.org/10.1038/2882
http://www.ncbi.nlm.nih.gov/pubmed/10196566
http://dx.doi.org/10.1371/journal.pone.0025339
http://dx.doi.org/10.3389/fncom.2010.00136
http://www.ncbi.nlm.nih.gov/pubmed/20948584
http://www.ncbi.nlm.nih.gov/pubmed/12736341
http://dx.doi.org/10.1152/jn.00551.2006
http://www.ncbi.nlm.nih.gov/pubmed/16928795
http://dx.doi.org/10.1111/j.1460-9568.1997.tb01648.x
http://www.ncbi.nlm.nih.gov/pubmed/9464925
http://dx.doi.org/10.1152/jn.01352.2006
http://www.ncbi.nlm.nih.gov/pubmed/17267749
http://dx.doi.org/10.1523/JNEUROSCI.0738-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15525769
http://dx.doi.org/10.1038/nn1825
http://www.ncbi.nlm.nih.gov/pubmed/17173043
http://www.ncbi.nlm.nih.gov/pubmed/9744930
http://dx.doi.org/10.1103/PhysRevE.59.4498
http://dx.doi.org/10.1162/089976601317098501
http://dx.doi.org/10.1097/00001756-199010000-00008
http://www.ncbi.nlm.nih.gov/pubmed/2129865
http://dx.doi.org/10.1038/360070a0
http://www.ncbi.nlm.nih.gov/pubmed/1331808
http://dx.doi.org/10.1073/pnas.86.23.9574
http://www.ncbi.nlm.nih.gov/pubmed/2556718
http://dx.doi.org/10.1038/75714
http://www.ncbi.nlm.nih.gov/pubmed/10816309


postsynaptic correlate of long-term potentiation. Nature 266:737–739.
CrossRef Medline

Magee JC, Johnston D (1997) A synaptically controlled, associative signal
for Hebbian plasticity in hippocampal neurons. Science 275:209 –213.
CrossRef Medline

Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing
pattern in model neocortical neurons. Nature 382:363–366. CrossRef
Medline

Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches.
Neuron 44:5–21. CrossRef Medline

Malenka RC, Kauer JA, Zucker RS, Nicoll RA (1988) Postsynaptic calcium is
sufficient for potentiation of hippocampal synaptic transmission. Science
242:81– 84. CrossRef Medline

Malinow R, Mainen ZF, Hayashi Y (2000) LTP mechanisms: from silence to
four-lane traffic. Curr Opin Neurobiol 10:352–357. CrossRef Medline

Manninen T, Hituri K, Kotaleski JH, Blackwell KT, Linne ML (2010) Post-
synaptic signal transduction models for long-term potentiation and de-
pression. Frontiers Comput Neurosci 4:152. CrossRef Medline

Markram H, Tsodyks M (1996) Redistribution of synaptic efficacy between
neocortical pyramidal neurons. Nature 382:807– 810. CrossRef Medline
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