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Abstract

The speed of computations in neocortical networks critically depends on the ability of populations of spiking neurons to rapidly
detect subtle changes in the input and translate them into firing rate changes. However, high sensitivity to perturbations may lead
to explosion of noise and increased energy consumption. Can neuronal networks reconcile the requirements for high sensitivity,
operation in a low-noise regime, and constrained energy consumption? Using intracellular recordings in slices from the rat visual
cortex, we show that layer 2/3 pyramidal neurons are highly sensitive to minor input perturbations. They can change their popula-
tion firing rate in response to small artificial excitatory postsynaptic currents (aEPSCs) immersed in fluctuating noise very quickly,
within 2-2.5 ms. These quick responses were mediated by the generation of new, additional action potentials (APs), but also by
shifting spikes into the response peak. In that latter case, the spike count increase during the peak and the decrease after the
peak cancelled each other, thus producing quick responses without increases in total spike count and associated energy costs.
The contribution of spikes from one or the other source depended on the aEPSCs timing relative to the waves of depolarization
produced by ongoing activity. Neurons responded by shifting spikes to aEPSCs arriving at the beginning of a depolarization wave,
but generated additional spikes in response to aEPSCs arriving towards the end of a wave. We conclude that neuronal networks
can combine high sensitivity to perturbations and operation in a low-noise regime. Moreover, certain patterns of ongoing activity

favor this combination and energy-efficient computations.

Introduction

Accumulating evidence suggests that cortical networks use sparse
code for representing sensory stimuli and processing. Sparseness
means that information is encoded by the activity of a small sub-
population of neurons, and often in a few, temporally precise spikes
(Theunissen, 2003; Olshausen & Field, 2004; Wolfe et al., 2010).
Examples of sparse coding in the brain range from representation of
visual objects and scenes, sounds and somatosensory information in
respective sensory cortices (e.g. Olshausen & Field, 1996; Brecht &
Sakmann, 2002; Lewicki, 2002) and odors in the olfactory bulb
(Spors & Grinvald, 2002), to feedback projections from motor to
sensory cortices (Petreanu ef al., 2012) and decision-making net-
works of the parietal cortex (Harvey et al., 2012). Although cortical
synapses can occasionally be strong (Miles & Wong, 1983; Volgu-
shev et al., 1995; Galarreta & Hestrin, 2001; Song, 2005; Lefort
et al., 2009; IkegayaY et al., 2013), the vast majority of connections
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between cortical neurons are weak. To achieve sparse coding using
these weak connections, neurons need to be sensitive to subtle
changes in their inputs. Indeed, recent studies have shown that neo-
cortical neurons are highly sensitive to even minor perturbations at
their inputs (London et al., 2010; Tchumatchenko et al., 2011; Ilin
et al., 2013). Moreover, neurons can change their firing rate in
response to small-amplitude current steps embedded in the fluctuat-
ing input very quickly, on the scale of 1-2 ms (Tchumatchenko
et al., 2011; Ilin er al., 2013). However, in a system composed of
highly sensitive elements, any perturbation, including noise, may be
amplified, leading to a ‘noise explosion’ (London er al., 2010). A
high level of noise would necessitate the use of strong signals for
communication between neuronal ensembles, and create unfavorable
conditions for temporal coding, thus forcing the use of rate coding
(London et al., 2010). It would also lead to increased energy con-
sumption, which is an important constraint on the processing abili-
ties of the brain (Attwell & Laughlin, 2001; Lennie, 2003; Harris
et al., 2012). It remains unclear whether high sensitivity to perturba-
tions is compatible with operation in a low-noise regime that favors
sparse temporal coding. Here, we show, using intracellular record-
ings in slices from the rat visual cortex, that layer 2/3 pyramidal
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neurons can respond to small artificial excitatory postsynaptic cur-
rents (aEPSCs) by changing their population firing rate very quickly,
within ~2 ms after the excitatory postsynaptic current (EPSC) onset.
A quick increase in the firing rate was produced by the generation
of new, additional action potentials (APs) but also by shifting spikes
into the response peak. Neurons typically responded by shifting
spikes to aEPSCs arriving at the beginning of a depolarization wave.
Because these responses did not lead to an increase in total spike
count, they would not lead to an explosion of firing, and increases
in noise and related energy costs in the system. We conclude that
neuronal networks can combine both high sensitivity to perturba-
tions and operation in a low-noise regime, and that certain patterns
of ongoing activity are especially favorable for this combination and
for energy-efficient computations.

Materials and methods

All experimental procedures used in this study were in accordance
with National Institutes of Health regulations. Experimental proto-
cols were approved by the Institutional Animal Care and Use
Committee of the University of Connecticut. In vitro intracellular
recordings were made in slices of rat visual cortex. The details of
slice preparation and recording were similar to those described
previously (Volgushev et al., 2000; Tchumatchenko et al., 2011;
Ilin et al., 2013). Wistar rats (postnatal day 21-28; Charles River or
Harlan, USA) were anesthetized with isoflurane (Baxter, USA) and
decapitated, and the brain was rapidly removed. One hemisphere
was mounted onto an agar block, and 350-pum-thick coronal slices
containing the visual cortex were cut with a vibrotome (Leica,
Germany) in ice-cooled oxygenated solution. After being cut, the
slices were placed into an incubator, where they were allowed to
recover for at least 1 h at room temperature before being transferred
to the recording chamber. The solution used during the preparation
of the slices had the same ionic composition as the perfusion/extra-
cellular solution. It contained 125 mm NaCl, 2.5 mMm KCI, 2 mm
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CaCl,, 1 mm MgCl,, 1.25 mm NaH,PO,4, 25 mm NaHCOj;, and
25 mm D-glucose, and was bubbled with 95% O, and 5% CO,. In
some experiments, synaptic transmission was blocked by adding
25 pum 2R-amino-5-phosphonopentanoate, 5 pm 6,7-dinitroquinoxa-
line-2,3-dione and 80 pm picrotoxin to the extracellular solution.
Chemicals were obtained from Sigma-Aldrich or Tocris.

Recordings were made with the slices submerged at 28-32 °C.
The temperature in the recording chamber was monitored with a
thermocouple positioned close to the slice, 2-3 mm from the record-
ing site. Whole-cell recordings with patch electrodes were made
from layer 2/3 pyramidal neurons, selected under visual control with
Nomarski optics and infrared videomicroscopy. The patch electrodes
were filled with a potassium gluconate-based solution (130 mm
potassium gluconate, 20 mm KCl, 4 mm Mg-ATP, 0.3 mm Na,-
GTP, 10 mm sodium phosphocreatine, 10 mm Hepes) and had a
resistance of 4-6 M(). Recordings were performed with the bridge
mode of an Axoclamp-2A (Axon Instruments, USA) or a Dagan
BVC-700A (Dagan Corporation, USA) amplifier. After amplification
and low-pass filtering at 10 kHz, data were digitized at 20 kHz and
fed into a computer (Pentium4; Digidata 1440A interface and
PCLAMP software; Molecular Devices).

Fluctuating current for injection into a neuron, o#(f), was synthe-
sized to mimic the effect produced in the soma by numerous
balanced excitatory and inhibitory synaptic inputs (Destexhe & Pare,
2003). n(z) was an Ornstein—Uhlenbeck process with zero mean, unit
variance and correlation time t; = 50 ms, and ¢ was the standard
deviation of the resulting background current noise, scaled to
achieve membrane potential fluctuations of ~15-20 mV in ampli-
tude. Membrane potential fluctuations produced by the injected
current were similar to those recorded in neocortical neurons in vivo
(Azouz & Gray, 2000; Destexhe & Pare, 2003; Volgushev et al.,
2003, 2006). Each realization of the noise current was injected either
as ‘noise only’, or with aEPSCs added at a rate of 1/s (Fig. 1B and
C). aEPSCs were synthesized with a rise time of 1 ms, a decay
time of 10 ms, and a peak amplitude of 20 pA. During current
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FiG. 1. Experimental paradigm — how to study population encoding in slices. (A) A scheme of the three-layer network of neurons. Green arrows show divergent
connections from one-first-layer neuron (‘source neuron’) with neurons of the second layer, which converge on a third-layer neuron (‘decoder’). Other neurons
and connections are shown in gray. (B) The input to each second-layer neuron consists of individual fluctuating noise and a common EPSC produced by an AP
in the source neuron. Population firing of these neurons provides synaptic input to the decoder neuron in the third layer. (C) In the experiment, aEPSCs immersed
in different episodes of fluctuating noise are injected in a cell sequentially. This mimics population encoding from (B). [Color version of figure available online].
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injection, a DC current was added if necessary to maintain the
desired firing rate of ~4-5 Hz in most experiments, or ~1 Hz in
some experiments, as indicated. All currents were injected into the
soma through the whole-cell recording pipette. Current injections
lasted for 46 s, and were separated by a recovery period of 60—
100 s.

Data were processed offline in matLAB (The Mathworks, Natick,
MA, USA). Spikes were detected in membrane potential traces as
positive zero crossings. Spike timings were used for construction of
peristimulus time histograms (PSTHs), and for estimating EPSC
detection probability.

The probability of EPSC detection was quantified with a theoreti-
cal decoder (Tchumatchenko ef al., 2011; Ilin et al., 2013) that
reports a change in the input when the population firing rate exceeds
the 95% quantile of the pre-signal distribution. The probability of
detection was estimated as function of time interval 7 (from 0.4 ms
to 10 ms after the EPSC onset), for populations of 300, 1000 and
3000 neurons, with bootstrap analysis, and calculated from theoreti-
cal distributions. For bootstrap analysis, we composed 100 trial sets
of 300 (or 1000 or 3000) randomly selected sweeps. For each time
interval 7, we first used all 100 trial sets to calculate the distribution
of spike counts during the pre-signal interval 7 and defined the 95%
quantile of this distribution. Next, for each trial set, we determined
whether the spike count in the interval T after the EPSC onset fell
outside the 95% quantile of the pre-signal distribution. The number
of trial sets that fulfill this condition provides an estimate of the
probability of a population of N neurons detecting the EPSC within
time 7 after its onset. The whole procedure was then repeated 30
times for 300 (or 1000 or 3000) neurons to obtain the results shown
as open circles in Fig. 2D.

Theoretical curves of detection probability were calculated as
follows. The distribution of the number of spikes in a window of
length T after the signal onset, Dy, and the distribution of the
number of spikes in a window of the same length before signal
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onset, Dy, were modeled as two independent binomial distributions
with N equal to the number of neurons (N = 300, N = 1000, or
N = 3000), and success probabilities Py, (after EPSC onset) and
Pyre (before EPSC onset), respectively. The success probabilities
Ppost and Py, were estimated by using data from all recordings as
average probabilities of spikes, i.e.

(total number of spikes in window T')/(total number of repetitions)

The theoretical detection probabilities were then computed as the
probability that a binomial distribution B(N,Pp.s) exceeds the 95%
quantile of a binomial distribution B(N,P,..), i.e.

1 - FB(N«,PPOSt) [FE(}VAPpre) (095)]

with Fpv pposyy and F) g&v‘,,m) denoting the distribution and quantile
function of a binomial random variable with parameters N and P,
respectively. Distributions and quantiles were computed with the MAT-
LAB programs binoinv and binocdyf.

The significance of an increase or decrease in spike count in
response to the injection of fluctuating currents with immersed
aEPSCs as compared with responses to currents without aEPSCs
was calculated on the basis of on a one-sided version Welch’s #-test.
Spike count was considered to be significantly (P < 0.05) increased
(decreased) if the lower (upper) bound of the one-sided confidence
interval for the difference of the mean spiking rate was above
(below) zero.

Results

We used an established approach to study firing rate responses of
neuronal populations (Silberberg et al., 2004; Tchumatchenko et al.,
2011; Ilin et al., 2013). Consider a population of independent
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F1G. 2. Rapid detection of small aEPSCs in population firing. (A) Responses of a neocortical neuron to injection of two episodes of fluctuating noise current
(gray traces) with immersed small aEPSCs (red). (B) Firing rate changes of a neuronal population in response to injection of fluctuating current with immersed
aEPSCs (red trace). Data from 11 neurons; total of 2959 repetitions. Bin 1 ms. The dashed gray line shows averaged firing rate (4.84 impulses/s). (C) Zoom-in of
response peak, a portion of the histogram indicated by the gray bar at the top of (B). Green vertical dashed lines in (A—C) show aEPSC onset. (D) Probability of
aEPSC detection by populations of 300, 1000 and 3000 neurons vs. time — results of bootstrapping (circles) and theoretical curves (diamonds, solid lines). [Color

version of figure available online].
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neurons receiving input from one common fiber (Fig. 1A). Each
neuron of the population has a unique pattern of background activity
(‘noise’) that is different from that of other neurons, but also
receives an input from a common fiber, which is the same for all
neurons in the population (Fig. 1B). Background activity in each
neuron is mimicked by injecting fluctuating noise current, which is
different for different cells, and common input is mimicked by intro-
ducing a common signal, an aEPSC injected into all neurons.
Recording from all neurons of the population simultaneously
(Fig. 1B) is mathematically equivalent to successive recording of
responses of several cells to the signal immersed in different realiza-
tions of the fluctuating noise (Fig. 1C). Averaging the successively
recorded responses provides an estimate of the population response,
whereby the number of repetitions is equivalent to the number of
neurons in the population (Silberberg et al., 2004).

Figure 2A shows membrane potential responses to the injection
of two different realizations of fluctuating noise with immersed
aEPSCs. The PSTH constructed with spikes from 2959 such
responses shows a clear peak at the aEPSC onset (Fig. 2B and C).
The firing rate changes sharply within ~2 ms after the aEPSC onset.
A theoretical decoder that reports a change in the input if the popu-
lation firing rate exceeds the 95% quantile of the pre-signal distribu-
tion (Ilin et al., 2013) can report the change in firing rate of a
population of 1000 or 3000 neurons very quickly, within 2-2.5 ms
(Fig. 2D). With a decrease in the size of the population to 300, the
time required for detection increases to approximately 5-6 ms
(Fig. 2D, green). The high sensitivity of neocortical neurons to aE-
PSCs described above is consistent with recent in vivo (London
et al., 2010) and in vitro (Tchumatchenko et al., 2011) results. Also,
the quantification of the detection speed of aEPSCs and its depen-
dence on the size of neuronal population are in agreement with
recent reports on quick detection of small DC current steps by popu-
lations of neocortical neurons in vitro (Tchumatchenko et al., 2011;
Ilin et al., 2013).

However, high sensitivity of neurons to input perturbations and
high speed of firing rate responses to subtle changes in the input
may have undesirable effects on the operation of neuronal networks.
The generation of new spikes in response to any additional EPSC
may lead to amplification of random perturbations, and thus to
‘noise explosion’ in the system (London et al., 2010) and a corre-
sponding increase in energy consumption. It remains unclear how
these undesirable effects are counteracted in neuronal networks. One
possibility here is to change the timing of spikes, so that APs that
are about to be generated at some time during the next few dozens
of milliseconds will be actually generated earlier, upon arrival of an
additional EPSC. In this scenario, the EPSC would still produce a
peak in the population firing rate, but would not lead to additional
spikes and related undesirable network effects. This ‘redistribution’
hypothesis predicts that: (i) after the EPSC-produced peak, the firing
rate will decrease below the average; and (ii) the number of spikes
in the histogram peak will be higher than the total increase in the
spike count.

To test these predictions, we injected neurons with pairs of fluctu-
ating currents — one sweep consisting of fluctuating noise with
aEPSCs immersed in it, as in the experiments described above, and
the other sweep in a pair containing the same fluctuating noise only,
without aEPSCs. Figure 3A shows the firing rate changes of a large
population of neurons (N = 12 105; mean firing rate, 4.2 Hz) in
response to injection of fluctuating noise with and without an
immersed aEPSC. Because injections of fluctuating current induce
reliable and reproducible spike responses in neocortical neurons
(Mainen & Sejnowski, 1995), the difference between the two
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FI1G. 3. The transient firing rate response to small aEPSCs is produced both
by generation of additional APs and by shifting the ‘existing’ spikes. (A) Fir-
ing rate changes of a large neuronal population (data from 17 neurons,12 105
repetitions; bin 2 ms) in response to injection of fluctuating current with
immersed aEPSCs (top), and responses to the same fluctuating current but
without aEPSCs (gray histogram, bottom). (B1, B2) Difference between pop-
ulation firing induced by injection of fluctuating current with and without
aEPSCs, calculated with data from (A). The red line shows the aEPSC,
scaled to match the amplitude of the histogram peak. (B2) Zoom-ins of the
peak region (left) and histogram with the 10-ms bin (right). In all three histo-
grams in B1, B2, dark blue bars show the duration of the aEPSC and the his-
togram peak (0-35 ms), and the magenta bars show the period of decreased
firing (arrows, 35—-100 ms). [Color version of figure available online].

histograms (Fig. 3B) provides an estimate of the firing rate change
caused by the addition of aEPSCs relative to control. The difference
histogram demonstrates, first, that the shape of the histogram peak
(0-35 ms after the aEPSC onset) reproduces precisely the shape of
the injected aEPSC, and second, that there is a decrease in the firing
rate after the peak during 35—-100 ms after the aEPSC onset (oblique
arrows in Fig. 3B1 and B2). The decrease in population firing rate
stands out clearly in the zoom-in of the response and with a larger
bin size (Fig. 3B2). It indicates that some of the spikes generated in
the noise-only condition did not appear during 35-100 ms of
responses to aEPSCs immersed in noise. Moreover, the increase in
total spike count in response to injection of noise with aEPSCs as
compared with noise only (N, = 781 spikes) was less than the
number of spikes in the peak (0-35 ms, Npeac = 1146 spikes). Thus,
the response peak was composed of APs originating from two
sources. Of 1146 spikes in the response peak, approximately
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two-thirds were ‘new’ or ‘additional’ spikes, which would not be
generated in response to injection of noise current without an
aBEPSC (Npey = 781, or 68% of Npec = 1146). The remaining one-
third of the response peak was composed of ‘shifted’ spikes, i.e.
those that would be generated in response to noise-only injection,
but the addition of an aEPSC changed their timing, shifting them
into the response peak (Ngifiea = Npeak — Nnew = 365, or 32% of
Npeax = 1146). The effect of shifting spikes into the response peak
by the addition of an aEPSC was also clearly present in experiments
with a lower rate of background firing (1.1 Hz, Ngnifeq = 229, or
22% of Npeax = 1065). These results are consistent with the above
predictions of the redistribution hypothesis.

What determines whether the response to an aEPSC is composed
of added or shifted spikes? To address this question, we exploited
the fact that the peak of the population response reproduces
precisely the shape of an aEPSC (Fig. 3). This allowed us to spec-
ify, for the following analysis, two intervals — one that included the
peak (0-35 ms after aEPSC onset), and another that included the
trough of the firing rate response (35-100 ms). The generation of
additional APs in response to aEPSCs would produce a histogram
peak that would not be followed by a decrease in the firing rate
below the mean. In contrast, shifting spikes into the peak would
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lead to a firing rate decrease after the peak. In the next series of
experiments, we repeatedly injected, in five neurons, 45 pairs of epi-
sodes of fluctuating noise with or without immersed aEPSCs
(Fig. 4A). Each pair of episodes was injected 110 times. For each
pair, we computed difference histograms (Fig. 4B). Note that the
histograms in each column were computed by using responses to
multiple injections of the same realization of the fluctuating current.
For this reason, noise-only histograms are not flat, and the difference
histograms in Fig. 4B do not reproduce the aEPSC shape. However,
because the firing rate response of a population of neurons receiving
independent fluctuating input reliably reproduces the aEPSC shape
(Fig. 3), we used the windows defined above to calculate changes in
spike count during the response peak (0-35 ms; Fig. 4B) and during
the trough (35-100 ms; Fig. 4B). Figure 4B illustrates four types of
difference histogram. Histograms of the first type showed an
increase in the firing rate during 0-35 ms after aEPSC onset
(P < 0.05), followed by a comparable decrease in the firing rate
below the mean level during the 35-100-ms interval (Fig. 4B, left
column). The histogram peak was thus produced by shifting the
spikes that would occur later in response to noise-only current injec-
tion. In histograms of the second type, the increase in the firing rate
during 0-35 ms was not followed by a significant decrease during
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FiG. 4. Differential contributions of added and shifted spikes to the histogram peak. (A) Experimental paradigm. A set of 45 different episodes of fluctuating
noise with or without immersed aEPSCs were injected into neurons repeatedly (110 repetitions). (B) Examples of four (out of 45) episodes of the injected currents
and firing rate responses. Gray traces of noise without aEPSCs are superimposed on black traces with immersed aEPSCs; vertical dashed lines show aEPSC onset.
The horizontal dashed line shows the DC current (0.255 nA) used to achieve a target firing rate of 4-6 impulses/s. Histograms show firing rate responses to the
injected currents with (black) or without (gray) immersed aEPSCs, and their difference (colored histograms). The horizontal bars in the bottom show measuring
windows corresponding to the duration of the aEPSC/histogram peak (dark blue, 0-35 ms), and the period of decreased firing (magenta, 35-100 ms), as in
Fig. 3B. For each of the 45 difference histograms, the number of spikes was measured in these windows. (C) Spike count in the peak (0-35 ms) vs. spike count
after the peak (35-100 ms) of 45 difference histograms. Red symbols (n = 7) show cases when spikes were ‘shifted’ to produce the histogram peak — the spike
number increase in the histogram peak was balanced by the decrease after the peak. Green symbols (n = 7) show cases in which the histogram peak was pro-
duced by additional, ‘new’ spikes — spike count was increased in the peak but did not change after the peak. Blue symbols (n = 4) show cases with both added
and shifted spikes. Open symbols show the remaining (n = 27) cases. Arrows indicate data for four episodes from (B). [Color version of figure available online].
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the 35-100-ms interval, indicating that the aEPSC led to the genera-
tion of additional spikes that were not present in the response to
noise-only injection (Fig. 4B, second column). In histograms of the
third type, the peak was followed by a firing rate decrease, but the
decrease was of a smaller magnitude than the peak. We interpreted
this as an indication that both additional and shifted spikes contrib-
uted to the peak (Fig. 4B, third column). Finally, histograms of the
fourth type showed little aEPSC-related firing rate change. In fact,
on most such occasions, neither injection of noise-only current nor
injection of noise with aEPSCs evoked spikes during the specified
intervals (Fig. 4B, right column).

The scatter plot in Fig. 4C shows the results of this analysis for
all 45 episodes. Each point represents the data for one pair of noise
episodes, with the spike count change in the peak (0-35 ms after
aEPSC onset) plotted against spike count change during the
35-100-ms interval. Note that calculations were performed with the
difference histograms, so spike count values can be negative. When
the histogram peak was produced by shifting spikes, that is, the
increase in spike count during the peak was compensated by the
decrease in spike count in the 35-100-ms interval (type 1 histo-
gram), data points were located at or around the negative-slope diag-
onal (Fig. 4C). When the peak was produced by added spikes (type
2 histogram), respective data points were located around the ordinate
(Fig. 4C). Data points located between the negative-slope diagonal
and the ordinate represent cases in which the histogram peak was
composed of both added and shifted spikes (type 3 histogram).

We thought that the reason why an aEPSC led to additional spikes
in some cases but shifted spikes into the peak in other cases may lay
in the difference between patterns of the ongoing membrane potential
fluctuations during which aEPSCs arrived. To test this conjecture, we
selected seven cases in which the histogram peak was produced by
shifted spikes, seven cases in which the peak was formed by addi-
tional spikes, and four cases in which both added and shifted spikes
contributed to the peak (Fig. 4C). For each of the three groups, we
computed the PSTHs and averaged traces of the membrane potential
(Fig. 5). The pattern of background activity was clearly different for
the three groups. When aEPSCs arrived at the beginning of a depolar-
izing wave and the associated increase in population firing, they
shifted the spikes into the response peak (Fig. 5, left column). When
they arrived towards the end of a depolarizing wave, they evoked
additional spikes (Fig. 5, middle column). When they arrived in the
middle of the activity wave, they shifted spikes and evoked additional
ones (Fig. 5, right column). Thus, the pattern of ongoing activity
determines whether additional spikes will be generated in response to
an EPSC, or whether a neuron will respond by shifting the spikes,
without a net increase in the firing rate.

Discussion

The results of the present study show that populations of cortical
neurons are highly sensitive to even minor perturbations of their
input, and can change their firing rate very quickly, within 2-2.5 ms,
in response to small aEPSCs. Quick firing rate responses to aEPSCs
were mediated by: (i) the generation of new, additional APs; and (ii)
shifting spikes into the peak, so that the increased spike count during
the response peak was compensated by the decrease in the number
of spikes that occurred after the peak. The contribution of spikes
from one or the other source to the response peak depended on the
EPSC timing relative to the pattern of ongoing activity.

The high sensitivity of neocortical neurons to small aEPSCs is con-
sistent with recent results reported for neurons of other types and/or
from other cortical regions (London et al., 2010; Tchumatchenko
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Fi1G. 5. Relative contributions of added and shifted spikes to the response
peak depend on the pattern of background activity. Firing rate changes in
episodes in which the response peak was composed of shifted spikes (n = 7,
left column), added spikes (n = 7, middle column) and a combination of
shifted and added spikes (n = 4, right column). Responses to injection of
fluctuating noise with aEPSCs, noise only and their difference are shown.
Averaged membrane potential traces are superimposed on the respective his-
tograms. Dashed vertical lines show the onset of aEPSCs.

et al., 2011). In pyramidal neurons from layer 5 of the rat barrel cortex
in vivo, injection of subtle aEPSCs (~25 pA in amplitude) led to a
detectable change in the firing of neurons. Moreover, APs induced in
a single neuron by depolarizing pulses led to a measurable change in
the population firing of neighboring neurons (London et al., 2010). In
layer 3 pyramidal neurons from the rat visual cortex in vitro, injection
of small current steps immersed in fluctuating noise led to clear
changes in population firing that could be detected quickly, on a milli-
second time scale (Tchumatchenko ef al., 2011; Ilin et al., 2013).
Prior data have also shown that neocortical neurons connected via
strong synapses (~180 pA in amplitude) can communicate rapidly
(Galarreta & Hestrin, 2001), and that a few strong connections may
define the preferred pathways for transmission of sensory information
in neocortical networks (Lefort et al., 2009; Teramae et al., 2012; Tke-
gaya et al., 2013). Our results extend these findings, showing that
populations of neocortical neurons can respond to small EPSC-shaped
signals immersed in fluctuating noise by changing their firing rate
quickly, within ~2 ms after aEPSC onset. This demonstrates that weak
synaptic connections can effectively influence neuronal firing, and
thus the propagation of signals in neocortical networks. Moreover,
neocortical neuronal ensembles are able to communicate rapidly, on a
millisecond time scale, using weak signals. High sensitivity to subtle
changes in the input and the ability to communicate rapidly by using
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weak signals are vital features for sparse encoding in cortical networks
(Olshausen & Field, 1996, 2004; Theunissen, 2003; Wolfe et al.,
2010).

The downside of the high sensitivity is that any perturbation,
including noise, can lead to firing rate changes. In multilayer net-
works consisting of highly sensitive elements, this may lead to
amplification of signal-irrelevant events, resulting in a ‘noise explo-
sion” (London et al., 2010), runaway firing, and eventually to over-
excitation in the system. These effects would have devastating con-
sequences for the operation of neural networks. Increased noise
would lead to a degradation of the signal-to-noise ratio, necessitating
stronger signals for processing. The increased firing rate and the
demand for stronger signals would lead to a dramatic increase in
energy consumption. The generation of each AP is associated with a
chain of energy-demanding processes, such as the restoration of
ionic gradients disturbed by currents involved in the initiation and
propagation of the AP, transmitter release, and postsynaptic currents,
that, in total, account for ~50 to ~70% of energy consumption in
the cortex (Attwell & Laughlin, 2001; Lennie, 2003; Harris et al.,
2012; Howarth ef al., 2012). These undesirable consequences may
occur when neurons respond to changing inputs by generating addi-
tional APs. Explosion of activity can be prevented by inhibition —
ample evidence indicates that cortical neuronal networks operate in
a balanced regime (van Vreeswijk & Sompolinsky, 1996; Okun &
Lampl, 2008; Ozeki et al., 2009). Our results indicate an additional
mechanism that helps to prevent explosion of noise and the meta-
bolic costs of computations in neuronal networks. When firing rate
responses to EPSCs are mediated by shifting spikes into the
response peak, these problems do not occur at all. Because the net
number of spikes generated by a population of neurons does not
change, neither the noise in the system nor energy consumption will
increase. Rather, the response will be manifested as a redistribution
of the neuronal activity, so that the refined firing pattern will incor-
porate information about the EPSC and its timing.

In our experiments, approximately one-third of the response peak
in the PSTH was attributable to shifted spikes. How can spike tim-
ing be shifted? We hypothesized that, when a neuron is about to
generate a spike in response to injection of fluctuating noise, addi-
tion of an EPSP may advance the timing of the spike initiation, thus
‘shifting’ it into the response peak. Once the spike is generated, it
raises the threshold for the generation of further spikes, thus leading
to a trough in the histogram after the response peak. This interpreta-
tion is consistent with in vivo data showing that the AP threshold is
influenced by the history of membrane potential changes during a
few dozens of milliseconds, and cell firing during ~1 s preceding
the spike (Azouz & Gray, 1999; Henze & Buzsaki, 2001).

The contribution of shifted vs. added spikes to the response peak
depended on the pattern of ongoing activity. Activities of neuronal
ensembles across various brain regions and states show a distinct
temporal structure, examples ranging from the hippocampal theta
rhythm during active exploration (Buzsaki, 2006) or responses to
sensory stimuli (e.g. Volgushev er al., 2003) to slow sleep waves
(Steriade & Timofeev, 2003; Chauvette et al., 2011). Activation of
a single inhibitory neuron can completely shunt AP generation or
shift its timing in pyramidal neurons in the hippocampus (Cobb
et al., 1995; Miles et al., 1996). Our present results show that excit-
atory inputs, activated at certain phases of the ongoing rhythm, can
also produce a clear, detectable change in the firing rate mediated
by a change in the timing of APs, without the generation of addi-
tional spikes. In this regime, despite the high sensitivity of neurons
to input perturbations (Galarreta & Hestrin, 2001; London ef al.,
2010; Tchumatchenko et al., 2011), the noise level would remain
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low, as would the metabolic costs of neuronal computations (Attwell
& Laughlin, 2001; Lennie, 2003; Harris et al., 2012). Redistribution
of discharges of neuronal populations rather than the generation of
additional spikes may be one mechanism for the refinement of the
firing pattern of neuronal ensembles — a desirable feature for a
multitude of neural functions that rely on the precise timing of
spikes, such as spike timing-dependent synaptic plasticity (Caporale
& Dan, 2008), or effective temporal coding in sensory processing
(Gray & Singer, 1989; Singer, 1999).
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