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The processing speed of the brain depends on the ability of neurons to rapidly relay input changes. Previous theoretical and experimental
studies of the timescale of population firing rate responses arrived at controversial conclusions, some advocating an ultrafast response
scale but others arguing for an inherent disadvantage of mean encoded signals for rapid detection of the stimulus onset. Here we assessed
the timescale of population firing rate responses of neocortical neurons in experiments performed in the time domain and the frequency
domain in vitro and in vivo. We show that populations of neocortical neurons can alter their firing rate within 1 ms in response to
somatically delivered weak current signals presented on a fluctuating background. Signals with amplitudes of miniature postsynaptic
currents can be robustly and rapidly detected in the population firing. We further show that population firing rate of neurons of rat visual
cortex in vitro and cat visual cortex in vivo can reliably encode weak signals varying at frequencies up to �200 –300 Hz, or �50 times
faster than the firing rate of individual neurons. These results provide coherent evidence for the ultrafast, millisecond timescale of cortical
population responses. Notably, fast responses to weak stimuli are limited to the mean encoding. Rapid detection of current variance
changes requires extraordinarily large signal amplitudes. Our study presents conclusive evidence showing that cortical neurons are
capable of rapidly relaying subtle mean current signals. This provides a vital mechanism for the propagation of rate-coded information
within and across brain areas.

Introduction
Within 150 –200 ms, humans can process complex natural im-
ages and relate them to the visual world (Thorpe et al., 1996). In
a color-discrimination task, monkeys can make perceptual deci-
sions even within 30 ms (Stanford et al., 2010). To perform cog-
nitive tasks requiring interactions between multiple brain regions
in such short time intervals, neuronal ensembles must be able to
rapidly detect and transmit input changes. Sensory stimuli can
reach the cortex quickly, e.g., within 5-10 ms in the somatosen-
sory system (Swadlow and Hicks, 1996). However, the mecha-
nisms governing the speed of intracortical communication are
poorly understood and widely debated (Silberberg et al., 2004;
Koendgen et al., 2008; London et al., 2010). Recently, London et
al. (2010) found that cortical neurons are extremely sensitive to
changes of their input: injection of a subtle 25 pA current into a
single cortical neuron can change population firing rate in a local

cortical circuit, but the cellular basis of this remarkable sensitivity
and the response timescale is unknown. Theoretically, it is under-
stood that an input signal can be communicated to a neuronal
population via two channels. First, a current can be added to the
input of all neurons in a population, thus leading to the change of
the mean input current. This strategy is plausible for neuronal
communication, because a change of the mean current in post-
synaptic neurons is the primary effect of synaptic transmis-
sion. Second, the variance of input current fluctuations can be
changed, such that the signal modulates the variance of the input
fluctuations in all neurons, similar to the amplitude modulation
strategy widely used in radio communication. Indeed, in the neo-
cortex, the changes in the activity of excitatory and inhibitory
populations of neurons can accurately track each other (Okun
and Lampl, 2008), such that excitation and inhibition remain
balanced. In this case, a perturbation to the network would result
only in a change of input variance to each neuron but would
change little the mean input current. Thus, changing the variance
of the input may represent an additional way of communication
between neuronal populations (Lindner and Schimansky-Geier,
2001; Silberberg et al., 2004). Which of the two signal encoding
strategies may underlie the rapid communication between pop-
ulations of cortical neurons? Theoretical analysis suggests that
changes of the input mean can mediate fast population responses
of the leaky integrate and fire (LIF) model neurons and other
models with rapid action potential initiation (Fourcaud-Trocmé
et al., 2003). At the same time, an early study suggested that the
variance encoding strategy permits extremely fast population rate
encoding of strong alternations of the variance of the input to

Received May 2, 2011; revised June 14, 2011; accepted June 28, 2011.
Author contributions: T.T., A.M., F.W., and M.V. designed research; T.T., A.M., and M.V. performed research; T.T.,

A.M., and M.V. analyzed data; T.T., A.M., F.W., and M.V. wrote the paper.
This work is supported by Bundesministerium fuer Bildung und Forschung Grants 01GQ0430, 01GQ1005B,

01GQ07113, and 01GQ07112 (F.W., M.V.), German–Israeli Foundation Grant 906-17.1/2006 (F.W., M.V.), University
of Connecticut startup funds (M.V.), Federal Program of Russian Department of Education and Russian Foundation
for Basic Research (A.M.), Goettingen Graduate School for Neurosciences and Molecular Biosciences (T.T.), and the
Max Planck Society (T.T., F.W.). We are grateful to M. Chistiakova, J. Chrobak, A. Frolov, I. Fleidervich, M. Gutnick, H.
Read, and H. Swadlow for fruitful discussions.

The authors declare no competing financial interests.
Correspondence should be addressed to Maxim Volgushev, Department of Psychology, University of Connecticut,

406 Babbidge Road, Unit 1020, Storrs, CT 06269-1020. E-mail: maxim.volgushev@uconn.edu.
DOI:10.1523/JNEUROSCI.2182-11.2011

Copyright © 2011 the authors 0270-6474/11/3112171-09$15.00/0

The Journal of Neuroscience, August 24, 2011 • 31(34):12171–12179 • 12171



neocortical neurons (Silberberg et al., 2004). Here, we show that
(1) populations of visual cortex neurons respond immediately to
subtle 20 pA change of mean input current in the soma, (2)
populations of cortical neurons in vivo can encode fast varying
signals up to 200 –300 Hz in their firing, and (3) populations
consisting of a few thousand neurons can reliably detect small
changes of mean input current within the first few milliseconds
after stimulus onset.

Materials and Methods
All experimental procedures used in this study were in accordance with
the guidelines published in the European Communities Council Direc-
tive (86/609/EEC, 1986) and conformed to National Institutes of Health
regulations. Experimental protocols were approved by the respective lo-
cal animal welfare committees (Bezirksregierung Arnsberg, Germany,
and Institutional Animal Care and Use Committee of University of
Connecticut).

In vitro intracellular recordings were made in slices of rat visual cortex.
The details of slice preparation and recording were similar to those pre-
viously used (Volgushev et al., 2000). The Wistar rats (P21–P28; Harlan)
of either sex were anesthetized with isoflurane (Baxter) and decapitated,
and the brain was rapidly removed. One hemisphere was mounted onto
an agar block, and 350-�m-thick sagittal slices containing the visual
cortex were cut with a vibratome (Leica) in ice-cooled oxygenated solu-
tion. After cutting, the slices were placed into an incubator where they
recovered for at least 1 h at room temperature before transferring them to
the recording chamber. The solution used during the preparation of the
slices had the same ionic composition as the perfusion/extracellular so-
lution. It contained (in mM) 125 NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 1.25
NaH2PO4, 25 NaHCO3, and 25 D-glucose and was bubbled with 95% O2

and 5% CO2. Recordings were made with the slices in submerged condi-
tions at 28 –32°C. Temperature in the recording chamber was monitored
with a thermocouple positioned close to the slice, 2–3 mm from the
recording site. Whole-cell recordings using patch electrodes were made
from layer 2/3 pyramidal neurons, selected under visual control using
Nomarski optics and infrared video microscopy. The patch electrodes
were filled with K-gluconate-based solution (in mM: 130 K-gluconate, 20
KCl, 4 Mg-ATP, 0.3 Na2-GTP, 10 Na-phosphocreatine, and 10 HEPES)
and had a resistance of 4 – 6 M�. All recordings were performed using the
bridge mode of Axoclamp-2A amplifier (Molecular Devices). After am-
plification and low-pass filtering at 10 kHz, data were digitized at 20 kHz
and fed into a computer (Pentium4; Digidata 1440A interface and
pClamp software; Molecular Devices). The recorded membrane poten-
tial responses to injected current were processed offline in Matlab (Math-
Works). For each cell and each frequency, spikes were detected in
membrane potential traces as positive zero crossings, and their times
extracted as {tj}, j � 1 . . . N. Current injections lasted 46 s and were
separated by a recovery period of 60 –100 s. In some experiments, synap-
tic transmission was blocked by adding 25 �M APV, 5 �M DNQX, and 80
�M PTX to the extracellular solution. All chemicals were obtained from
Sigma, unless stated otherwise.

In vivo intracellular recordings were made in adult cats of either sex
(3.0 – 4.5 kg). Surgery and animal maintenance were similar to those used
in our previous studies (Volgushev et al., 2002). Anesthesia was induced
with a mixture of ketamine hydrochloride (Ketanest, 0.3 ml/kg, i.m.;
Parke-Davis) and Rompun (0.08 ml/kg, i.m.; Bayer). Surgery was started
after stable anesthesia with complete analgesia was achieved. Sometimes
this required additional doses of the anesthetic. After tracheal and arterial
cannulations, the animal was placed in a stereotaxic frame, the skull was
exposed, and a craniotomy (�5 mm diameter) was done over area 17 of
the visual cortex centered at P4/L3 (Horsley–Clark). A brass cylinder (20
mm diameter) was cemented over the opening. The holder for hydrau-
lically driven micromanipulator (Narishige Instruments) was mounted
onto the skull with screws and dental cement. All wound edges and
pressure points were treated with a local anesthetic (Xylocaine; Astra)
every 5– 8 h. Muscle relaxation with alcuronium chloride (Alloferin; ICN
Pharmaceuticals) and artificial respiration were started either at this
point or earlier during the surgery to avoid respiratory depression attrib-

utable to additional doses of the anesthetic. Thereafter, adequate anes-
thesia was maintained throughout the experiment by a gas mixture of
N2O/O2 (70:30) and 0.2– 0.4% halothane (Eurim-Pharm). Artificial res-
piration was performed with a cat/rabbit ventilator (model 6025; Ugo
Basile, Biological Research Apparatus). The volume (20 – 40 cm 3) and
the rate of stroke (7–15 per minute) were adjusted to maintain end-tidal
CO2 between 3.5 and 4.0%. End-tidal CO2, body temperature, heart rate,
blood pressure, and EEG were continuously monitored. Body tempera-
ture was maintained �37–38°C. Fluid replacement was achieved by the
intra-arterial administration of 6 ml of Ringer’s solution containing
1.25% glucose per hour. Paralysis was maintained by intra-arterial infu-
sion of alcuronium chloride (0.15 mg � kg �1 � h �1) in Ringer’s solution.
The experiments lasted usually 2– 4 d. At the end of the experiment,
animals were killed with an overdose of anesthetics. In vivo intracellular
recordings from visual cortical neurons were made with sharp electrodes
filled with 2 M potassium acetate. Electrode resistance was 80 –120 M�.
Recordings were made using the bridge mode of Axoclamp-2B amplifier
(Molecular Devices). After amplification and low-pass filtering at 10
kHz, the data were digitized at 20 kHz and stored on a computer (Pen-
tium4; Digidata 1322A; Molecular Devices). Current injections lasted
30 s and were separated by a recovery period of 60 –100 s. For each cell
and each frequency, spikes were detected in membrane potential traces
with the same methods as in the in vitro recordings.

Assessing the frequency response function of neuronal populations. To
assess the frequency response of neuronal populations, we have somati-
cally injected currents that were composed of a sinusoid signal of fre-
quency f immersed in different realizations of a noise for in vitro
experiments or without added noise in vivo. A constant direct current
was added to maintain a target firing rate of �5 Hz. Currents were
injected in 30 – 46 s episodes, with 60 –100 s intervals between the injec-
tions. For each recording condition, in vitro with correlation time con-
stant of injected noise �I � 5 ms or �I � 50 ms or in vivo, currents were
injected in n � 4 . . . 10 different neurons. The vector strength r charac-
terizes phase locking of firing of the neurons to the periodic stimulus. r
was computed using all recordings for a frequency f in each recorded cell
individually and subsequently averaged across cells. In each cell, re-
sponses to several frequencies were recorded. The number and length of
recordings were as follows. In vitro recordings with �I � 5 ms were
obtained in nine cells, in which each cell contributed totally �9000 spikes
to frequencies f ( f � 3, 5, 50, 110, 230, 370, and 515 Hz). In vitro record-
ings with �I � 50 ms were obtained in 10 cells, in which each cell con-
tributed �9000 spikes to frequencies f ( f � 3, 5, 50, 110, 230, 370, and
515 Hz). In vivo recordings were obtained in four cells, in which each cell
contributed �1000 spikes to individual frequencies f ( f � 3, 13, 50, 110,
200, 300, 400, 500, and 600). Parameters of injected currents were ad-
justed to obtain similar amplitudes of membrane potential fluctuations
and similar firing rates (v) in all in vivo and in vitro experiments: in vitro
�I � 5 ms, membrane potentials fluctuations, �56 � 6.2 mV, v � 4.5 �
1.2 Hz; in vitro �I � 50 ms, membrane potentials fluctuations, �48.1 �
7.4 mV, v � 5.2 � 0.9 Hz; in vivo membrane potentials fluctuations,
�49.1 � 7.1 mV, v � 5.6 � 2.2 Hz.

To determine the statistical significance of phase locking of recorded
spikes to periodic input current stimulation, we used a randomization
test. This test was performed for spikes recorded for each input frequency
f and each cell separately. The value of the experimentally obtained vector
strength r was compared with values obtained for datasets of the same
size but randomized phase. Ten thousand independent realizations of
random sets {x�j} where each x�j � N(0,1), j � 1 . . . N (number of spikes
recorded in a cell in response to the input frequency f ) were used to
generate 10,000 realizations of phase randomized sets of spike times t�j �
(mod(tj � f,1) � x�j)/f. This procedure keeps the number of spikes equal to
that obtained experimentally but eliminates any original phase prefer-
ence. For each of the randomized sets of spike times, the corresponding
vector strength was calculated r�s � abs(�N

j�1 exp(i2�ft�j))/N. For the r�s
distribution, we calculated the 95th percentile, which is the value below
which 95% of the randomly drawn r�s can be found. The probability to
obtain by chance a value above the 95th percentile is 5%. The 95th per-
centile of the r�s distribution was taken as the single-cell significance level
for the modulation frequency f. The maximal 95th percentile value ob-

12172 • J. Neurosci., August 24, 2011 • 31(34):12171–12179 Tchumatchenko et al. • Ultrafast Population Coding



tained among cells recorded with the same modulation paradigm are
shown in the respective figure as significance levels.

Effect of step-like current change on voltage statistics. To assess the effect
of step current change on voltage statistics, we calculated the voltage
distributions in each period of the step protocol (intervals of 1 s for data
in Fig. 3, and intervals of 300 ms for data in Figs. 1, 2). When calculating
the distributions, spikes were truncated at �20 mV. In all in vitro exper-
iments, voltage distributions had a mean of �45 to �55 mV and an SD of
3–7 mV, which is within the previously reported in vivo range (Destexhe
et al., 2003; Volgushev et al., 2006). Steps of the mean current of �20 pA
delivered with a noise component ��(t) (data from Figs. 1, 3C) or
with intrinsic noise only (see Fig. 2) changed the membrane potential
mean by �1–2 mV, but its SD remained same or changed by 	0.5
mV. Changes in the input current variance (� ¡ 1.5�) (see Fig. 3A)
lead to 	0.5 mV changes of mean voltage and �0.2– 0.5 mV changes
in SD. Larger changes in the input current variance (� ¡ 3�) (see Fig.
3B) did not significantly alter the mean but clearly increased the
voltage SD by �1–2 mV.

Step onset detection. To quantify the speed of step onset detection, we
assume a theoretical decoder that reports a step change of input current
if the population firing rate falls outside the 95% confidence boundary of
pre-step distribution. We calculate the probability of step detection as a
function of the number of neurons that receive the common current step

(equivalent to the number of realizations N )
and time delay T after the step. To obtain the
probability of step detection by N neurons
within a time interval Tms after the step onset,
we composed 1000 trial sets; each consisting of
N randomly selected sweeps. In each trial set,
we determined whether the spike count in the
interval T after step onset fell outside the 95%
percentile of the corresponding pre-step distri-
bution. The number of trial sets, which fulfill
this condition, provides an estimate of the
probability for a population of N neurons to
detect the step change within a time T after step
onset. The probability to detect a step change
within the time t is equivalent to the cumula-
tive probability to encounter a spike count
larger than the 95% percentile (or smaller than
the 5% percentile if the firing rate is decreased)
of the spike count distribution before the step
onset. For an increase of firing rate, this can be
computed as 1 � CDF(P(N, v2t), Percent-
ile(P(N, v1t), 0.95)), where CDF is the cumula-
tive distribution function. For the decrease of
firing rate, we compute detection probability as
CDF(P(N, v2), Percentile(P(N, v1t),0.05) � 1).
Here, P(N, v1t) is the spike count probability
distribution, where P is the probability to fire a
spike given the average population rate �1, N
the number of neurons is the initial probability
distribution of spike counts, and P(N, v2t) is
the distribution of spike counts after the step
change.

Results
Layer 2/3 pyramidal neurons that medi-
ate computation within and communi-
cation between different cortical areas
(Gilbert and Wiesel, 1979) are particu-
larly relevant for sensory processing. To
directly test how populations of L2/3
cortical neurons respond to subtle input
changes, we examined their firing rate
dynamics in response to small-amplitude
current steps immersed in a fluctuating
background. Currents I(t) for in vitro in-
jection into the soma through a patch

electrode were digitally synthesized offline using the following
equation:

I
t� � I0 	 ��
t� 	 Im � Step
t�,

where Step
t� � � 1 if 300 ms 
 mod
t, 1.2 s) � 600 ms,
� 1 if 900 ms 
 mod
t, 1.2 s) � 1.2 s,
0 else

(1)

Here and in all following experiments, I0 is a constant current set
to maintain a target firing rate of 5 Hz. �(t) is an Ornstein–
Uhlenbeck process with 0 mean, unit variance, and correlation
time �I � 5 ms, and � is the SD of the resulting background
current noise. This noise component ��(t) mimics the effective
somatic current produced by a large number of balanced excit-
atory and inhibitory synaptic inputs in vivo (Destexhe et al.,
2003). Im � Step(t) describes the signal, in this case positive and
negative steps of amplitude Im and duration of 300 ms that were
interleaved with no stimulus (noise only) periods of 300 ms. One
stimulation cycle lasted for 1.2 s, with time course defined by

Figure 1. Encoding of current steps by single neurons and populations in vitro. A, Responses of a L2/3 neuron to 0.1 and 0.4 nA
steps. Red arrows, First spike latency. B, Inverse first spike latency versus step amplitude (N � 20 for each step) and linear fits (blue
lines). Red arrows, Responses in A. Inset, First spike latency versus step amplitude as derived from linear fits of the inverse first spike
latency (same current scale). C, Current steps (top) and current steps immersed in fluctuating current (�I � 5 ms) (bottom). To
ensure weak stimulation, we chose current steps of 20 pA, which in A correspond to an approximated latency �100 ms. D,
Membrane potential response to subthreshold current steps as in C (top) (average, N � 20) and to current in C (bottom). E,
Population firing in response to steps immersed in different realizations of fluctuating current, bin size 1 ms. Peristimulus time
histogram is constructed over all repetitions pooled from all 15 cells (�175 min; �52,000 spikes) by aligning the evoked spike
trains with the onset of current steps. Red line, Membrane potential from D (top). F, Zoom-in on responses in E. Blue and red
histograms denote distributions of spike counts in 1 ms bins 120 ms before (blue) and 40 ms after (red) each step. In the
distributions before the step, solid horizontal lines denote the mean and dashed lines 3 SD. Dashed green lines in C–F indicate the
onset of steps.
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Step(t) in Equation 1, where mod(t,1.2 s)
denotes t modulo the period length of
1.2 s (Fig. 1C). To guarantee weak stimu-
lation, the amplitude was set to Im � 20
pA, which corresponds to amplitudes of
unitary postsynaptic currents resulting
from the activation of a single excitatory
or inhibitory presynaptic fiber (Stern et
al., 1992; Hestrin, 1993), and is more than
one order of magnitude weaker than a
current step necessary to depolarize a typ-
ical neuron from the resting potential to
firing threshold (Fig. 1B). When applied
at subthreshold potentials, steps of this
small amplitude led to an approximated
first spike latency �100 ms, even for hold-
ing potentials close to the spike threshold
(�55 mV) (Fig. 1A,B). A 20 pA up or
down step in the current mean evoked a
mean membrane potential change of
�1–2 mV and left membrane potential
fluctuation variance unaffected. To test
whether populations of neocortical neu-
rons can detect these small changes at
their inputs, we injected currents with dif-
ferent realizations of the noise component
in 15 L2/3 pyramidal cells (Fig. 1E). Cell
firing during individual responses to current injection did not
show an obvious relation to the mean current step (Fig. 1D,
bottom trace). The population firing rate, however, clearly
changed with the onset and offset of step stimuli, as revealed by
the peristimulus time histogram of the spike times constructed
over all repetitions pooled from all 15 cells. It would be plausible
to expect that the low-pass filtering of input currents by the mem-
brane RC (resistor– capacitor) circuit should carry over to the
firing rate dynamics. However, in response to the current steps
presented on an in vivo-like background, the population firing
rate already changed within the first 1–2 ms after stimulus onset,
substantially faster than the mean membrane potential of the
neuron (Fig. 1E). Intuitively, ultrafast population response can
be understood using the following oversimplified reasoning. In a
population of firing neurons subject to random input, there are
always some neurons that are just about to fire and any additional
depolarization will immediately bring them over the threshold,
thus producing an instantaneous population response. In these
“early responders,” an action potential is triggered by the initial
subtle depolarization at the step onset, before the whole neuron is
charged and membrane potential reaches the steady state. Rapid
change of the population firing rate at the onset and offset of
current steps is clearly seen at zoom-in of the initial portions of
step responses (Fig. 1F). The population rate rapidly conveyed
both positive and negative changes of the mean current and could
increase by 185% or decrease by 75% within 1 ms (Fig. 1F). How
important is the presence of a substantial, in vivo-like back-
ground activity for the ultrafast changes of population firing rate
in response to subtle changes of the mean input current? To
clarify the influence of the noise component in fast population
responses, we conducted control experiments with no noise com-
ponent added [�(t) � 0] (Fig. 2A,B). In this case, only low in-
trinsic noise of in vitro preparation, e.g., attributable to
spontaneous transmitter release and channel noise, was present
(Steinmetz et al., 2000; Jacobson et al., 2005). Background firing
was kept at �5 Hz by injecting a constant depolarizing current.

Positive and negative current steps evoked rapid, abrupt changes
of population firing rate with a magnitude similar to that ob-
served in experiments with added noise (compare Figs. 1E,F and
2C,D). Thus, fast responses of neuronal populations to current
steps were robust phenomena, observed both in the presence of in
vivo-like membrane potential fluctuations, as well as with mini-
mal, intrinsic-only, noise. Results presented in Figures 1 and 2
clearly demonstrate that populations of layer 2/3 neocortical neu-
rons can respond to step-like changes of the mean input very
rapidly, on a millisecond timescale. This is the first demonstra-
tion of fast detection of weak mean encoded stimuli in the time
domain. Notably, previous studies of the speed of cortical popu-
lation encoding performed in the time domain and in the fre-
quency domain reported controversial results. The only study
conducted so far in the time domain in layer 5 pyramids used
current steps immersed in an almost-white Gaussian noise back-
ground with �I � 0.25 ms or in noise background with an un-
specified time constant that was recorded during elevated
synaptic activity induced by application of potassium channel
blocker 4-AP (Silberberg el al. 2004). This study reported a slow
response timescale for changes of the current mean and con-
cluded that encoding of mean changes is intrinsically slow and
only variance-encoded signals can be detected fast. However,
this result could be biased because of predominant use of physi-
ologically unrealistic almost-white noise that has been associated
in theoretical studies with a slow response timescale on the order
of the membrane time constant (Brunel et al., 2001; Lindner and
Schimansky-Geier, 2001; Ostojic et al., 2009). Interestingly, fre-
quency domain studies reported that layer 5 pyramidal neurons
can encode remarkably fast stimuli up to 200 –300 Hz in the
presence of background noise correlated either on a short (�I � 5
ms) or a long timescale (Koendgen et al., 2008; Higgs and Spain,
2009). This suggests that mean signals can be detected at a limit-
ing timescale of �1/(2�200 Hz) 	1 ms. To resolve this contra-
diction, it is necessary to study encoding of mean and variance-
coded signals under the same experimental conditions and in

Figure 2. Encoding of current steps by single neurons and populations in vitro under minimal noise conditions. A, Current steps.
B, An example of membrane potential response to current in A. C, Population response to current steps with intrinsic noise only
[�(t) � 0] pooled from all 11 cells (�81 min; �24,380 spikes); bin size, 1 ms. D, Zoom-in of responses from C. Red and blue
histograms show distributions of spike counts in bins 120 ms before (blue) and 40 ms after (red) each step, as indicated by the red
and blue horizontal bars. In the distributions before the step, horizontal lines show the mean rate (solid) and 3 SD (dashed). Dashed
green lines in A–D indicate the step onset, same notation as in Figure 1.
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neurons of the same type. Therefore, we next studied responses of
layer 2/3 pyramidal neurons to variance-coded signals in time
domain and to mean-coded signals in the frequency domain.

Low susceptibility to variance coded signals
Because the fluctuations in the activity of excitatory and inhibi-
tory populations accurately track each other in cortical networks
(Okun and Lampl, 2008; Renart et al., 2010; Ecker et al., 2010), a
perturbation to the network can result predominantly in a change
of input current variance, with little or no change in its mean.
Theoretical studies showed that changing the input current vari-
ance may represent a viable way of communication between neu-
ronal populations (Lindner and Schimansky-Geier, 2001;
Silberberg et al., 2004; Fourcaud-Trocmé and Brunel, 2005;
Naundorf et al., 2005b). To test this conjecture and to directly
compare the two encoding strategies in L2/3 pyramidal neurons,
we studied the firing rate dynamics in vitro in response to step-
like changes in the variance of the fluctuating input current:

I
t� � I0 	 ��
t� � 1 	 v � Box
t��

where Box
t� � � 1 if 0 
 mod
t, 2 s) � 1 s,
0 else (2)

As in the experiments described above, the constant current com-
ponent I0 was used to achieve a target firing rate of 5 Hz and �(t)
was the Ornstein–Uhlenbeck process with �I � 5 ms. v is the
magnitude of the SD increase, v � 0.5 or v � 2 in our experi-
ments. mod(t,2 s) denotes t modulo the period length of 2 s, so
that every second the SD of the fluctuating input was switched
between � and �(1 � v). To facilitate a comparison between the
variance versus the mean encoding strategies, a protocol with the
same time course was repeated for steps of mean current synthe-
sized as follows:

I(t) � I0 	 ��(t) 	 Im � Box(t), (3)

with Im � 20 pA. A 20 pA mean current step evoked a mean
membrane potential change of �1–2 mV and left membrane
potential fluctuation variance unaffected. The v � 2 step in-
creased the SD of the membrane potential fluctuations by �1–2
mV but left the mean voltage unaffected. Confirming the results
described above, small-amplitude 20 pA steps of the mean cur-
rent induced pronounced changes of the population firing rate of
layer 2/3 neurons, with clear instantaneous firing rate changes at
the onset of positive and negative steps (Fig. 3C). In contrast, a
step-like increase of the SD of the input current with comparable
magnitude (v � 0.5) failed to elicit a measurable firing rate
response (Fig. 3A). When we increased the magnitude of the
variance step to v � 2, which corresponds to a threefold � in-
crease (Fig. 3B), the increased input current fluctuations elicited
a substantial firing rate response. These results are consistent with
the large variance changes that were necessary to elicit a firing rate
response in neocortical neurons studied in time domain (Silber-
berg et al., 2004) and in frequency domain (Boucsein et al., 2009),
as well as with the firing rate dependence on current variance of
cortical neurons (Rauch et al., 2003). In responses to large vari-
ance changes, the population firing rate exhibited virtually in-
stantaneous components arising within 1–2 ms after the stimulus
onset (Fig. 3B). The instantaneous components of the response to
3� steps were comparable in magnitude and speed with the in-
stantaneous components in responses to small-amplitude steps
of the mean current (Fig. 3B,C). The tonic firing rate during the
3� step changed significantly less than during response to subtle
20 pA mean current steps. These results reveal a substantial dif-
ference in firing rate responses of layer 2/3 pyramidal neurons to
signals encoded via these two strategies. Minor changes of the
mean input current induce a virtually instantaneous change of
firing rate at the step onset, followed by a robust change of the
stationary firing rate. Thus, both the onset and duration of small
changes in the mean input current are reflected in the population

Figure 3. Population response to changes in variance (A, B) or mean (C) of the input current. A–C, Examples of fluctuating currents (�I � 5 ms) with step-like changes in the SD � by 50% (A1,
�3 1.5�3�), by 200% (B1, �3 3�3�) or step-like changes of the mean current � (C1, �3� � 20 pA3�). Population firing rate changes in response to injection of currents as
in A1–C1, 2530 realizations (A2), 5214 realizations (B2), and 2706 realizations (C2). A3–C3, Zoom-in of responses to the onset and offset of step-changes in (A2–C2). D, EPSC-like current pulse
immersed in fluctuating background (D1, D2) is reliably detected by a population of neurons (D3, 7600 realizations). In all subfigures, dashed green lines indicate the onset of steps or EPSCs; bin size,
1 ms.
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firing with high temporal precision. In
contrast, large changes in the input vari-
ance appear to be necessary to affect the
population firing rate, whereby the re-
sponse is predominantly transient with a
weak stationary component. These results
confirm the previously reported observa-
tion that large variance changes are neces-
sary to elicit a population firing rate
response (Rauch et al., 2003, their Fig. 4; Sil-
berberg et al., 2004, their Figs. 1B, 4B).
However, our results (Fig. 3) also show that,
to achieve a same size tonic rate component,
much larger changes of the variance than of
the mean are needed. Therefore, if during
experiments the magnitudes of current vari-
ance change and current mean change are
adjusted to produce the same increase of the
tonic firing rate, the nonlinear responses to
very strong variance changes will be com-
pared with responses to small or moderate
changes of the mean input current. This bias
of the stimuli strength in favor of variance
changes could be one of the reasons why
previous studies overlooked the fast onset
dynamics of responses to mean current
changes.

Detection of PSCs by populations of neurons
To further corroborate fast transmission of subtle mean current
signals in cortical neuronal populations, we studied the firing rate
dynamics of L2/3 pyramidal neurons in response to EPSC-like
currents immersed in a fluctuating background. EPSC-like cur-
rents with rise time 1 ms and decay time 10 ms were synthesized
as f(t) � e(exp(�t/10 ms)�exp(�t/1 ms)), with e chosen such
that the peak amplitude of each current pulse was 20 pA (Fig.
3D1), and added to a fluctuating background current ��(t) every
300 ms (ti � 300 ms � i with i � N; I0 and ��(t) as in Eqs. 1–3).
Injected currents I(t) were synthesized as

I
t� � I0 	 ��
t� 	 �
i

f
t � ti�. (4)

The firing rate of a population of cortical neurons changes
quickly and robustly in response to the fast, small-amplitude
EPSC (Fig. 3D). So far, ability to trigger an immediate spiking
response in populations of postsynaptic cells has been demon-
strated only for the exceptionally strong cortical synapses with
the postsynaptic current amplitudes of �200 pA or above (Galar-
reta and Hestrin, 2001). However, the overwhelming majority of
cortical synapses are much weaker, with postsynaptic current
amplitudes of �20 pA or smaller (Stern et al., 1992) and PSP
amplitudes well below 1 mV (Matsumura et al., 1996, their Tables
2, 3). Our results show that activity at such weak synapses can be
rapidly detected by postsynaptic population of a few thousand
neurons on the background of substantial, in vivo-like fluctua-
tions. Thus, a population of neurons receiving fast, small-
amplitude EPSC from just one common presynaptic cell can
reliably detect a single presynaptic spike and propagate this in-
formation to downstream cells. This indicates that the popula-
tion firing rate response to a single additional spike or a minor
current injection, as observed in local cortical circuits (London et
al., 2010), can be mediated via the mean-current signaling chan-
nel alone.

In vivo and in vitro response to periodic stimuli
To directly compare the timescale of population responses to step
stimuli in the time and in the frequency domain, we measured the
frequency response function of layer 2/3 pyramidal neurons. To
facilitate a comparison with recent in vitro work in other types of
cortical cells (Koendgen et al., 2008; Boucsein et al., 2009), we
obtained the frequency response function by measuring the re-
sponse to each input frequency individually. The resulting fre-
quency response function allows us to identify the bandwidth of
reliably encoded frequencies, which is closely connected to the
timescale of the rising phase in the population response (Brunel
et al., 2001; Fourcaud-Trocmé et al., 2003). Currents I(t) for
somatic injection into neurons were composed of a sinusoid sig-
nal of frequency f immersed in a noise. A constant current I0 was
added to maintain target firing rate of 5 Hz:

I(t) � I0 	 m sin(2�ft) 	 ��(t). (5)

The noise mimicking in vivo synaptic bombardment was gener-
ated as an Ornstein–Uhlenbeck process �(t) with a correlation
time �I � 5 ms or �I � 50 ms, SD � and signal-to-noise ratio
m/(m � �) � 0.26 (Fig. 4A,B). The ability of neurons to encode
signals of frequency f was quantified using the vector strength
(Goldberg and Brown, 1969; Joris et al., 2004; Zheng and Escabi,
2008) r � abs(�j�1

Nexp(i2�ftj))/N, where tj are the spike times
and N the number of spikes. Here, each spike is represented by a
vector of unit length and a phase between 0 and 2� defined by the
spike time modulo the stimulus period. If all spikes are emitted at
the same phase of the oscillation cycle, then r is maximal (r � 1),
indicating a perfect encoding of the input frequency. If spikes
occur at random phases, the vector strength is close to zero, in-
dicating that the signal frequency is not encoded in the firing rate.
We have assessed the frequency response function of layer 2/3
pyramidal neurons by calculating vector strength in responses to
different frequencies (3–515 Hz) (for more details, see Materials

Figure 4. Frequency encoding in neocortical neurons. A, B, Responses of L2/3 neurons in vitro to fluctuating current with
periodically modulated mean and long correlation time �I � 50 ms (A, “slow synapses,” blue) or short correlation time �I � 5 ms
(B, “fast synapses,” black). Bottom gray traces show the corresponding fluctuating component and the signal. C, Response of a cat
visual cortical neuron in vivo to sinusoidal current injection (green). In A–C, injected current is shown below each trace. D,
Frequency dependence of vector strength r for modulation paradigms in A–C, same color code. Dashed horizontal lines indicate the
corresponding single-cell 95% significance level. For each frequency f, the vector strength r was first computed using all recordings
from each cell and subsequently averaged across cells. E, Data from D displayed as normalized vector strength r/r(3 Hz).
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and Methods). Frequency response functions in Figure 4, D and
E, show that that layer 2/3 pyramidal neurons in vitro can reliably
encode weak periodic signals up to cutoff frequencies fc � 200 –
300 Hz in their population firing rate. Furthermore, input signals
varying at frequencies of hundreds of hertz were encoded for
both short (�I � 5 ms) or long (�I � 50 ms) correlation time
constants (Fig. 4D,E, blue and black curves). Can cortical neu-
rons in vivo also encode such high-frequency signals in their pop-
ulation firing? To assess this question, we made intracellular
recordings from regular spiking neurons in area 17 of cat visual
cortex in vivo and studied their firing rate dynamics in response
to injection of sinusoidally modulated currents of amplitude m

� 50 pA and different frequency f: I(t) � I0 � m sin(2�ft). No
noise was added to the injected current because membrane po-
tential fluctuations were produced by synaptic bombardment at-
tributable to the background inactivity in vivo (Fig. 4C).
Frequency response function of visual cortex neurons in vivo
showed high cutoff frequency of 200 –300 Hz (Fig. 4D, green
curve), closely corresponding to the in vitro measurements. In
vivo background current contains AMPA and NMDA receptor-
mediated components that strongly differ in the resulting current
correlation times �NMDA � 50 ms and �AMPA � 5 ms (Stern et al.,
1992; Hestrin, 1993; Zito and Scheuss, 2007). For in vitro exper-
iments, we therefore have used synthetic noise with a short (�I �
5 ms) or long (�I � 50 ms) correlation time constants to match
the in vivo noise constituents. To assess the effect of noise spectral

composition on frequency response
function, we normalized the vector
strengths obtained in the three experi-
ments to the response at the lowest fre-
quency r( f)/r(3 Hz). The in vivo transfer
function of neurons was enclosed by the
transfer functions measured in vitro with
�I � 50 ms and �I � 5 ms noise. This find-
ing is consistent with the mixture of
AMPA and NMDA receptor-mediated
components present in the fluctuations of
somatic net current in cortical neurons
(Zito and Scheuss, 2007). These results
demonstrate that cortical neurons in vitro
and in vivo can encode input signals over a
broad bandwidth, with cutoff frequency fc
of �200 –300 Hz. For a linear system, this
implies a response timescale of �1/(2�200
Hz) 	1 ms, which is consistent with the fast
timescale measured in our experiments with
step stimuli (Figs. 1–3). Close correspon-
dence between the response timescale
estimated from frequency-domain experi-
ments and the response speed directly mea-
sured in the time domain indicates that the
assumption of linearity might be adequate
for the description of mean evoked firing
rate changes in our experiments.

How many neurons are needed to
rapidly detect a subtle step-like
change of the mean input?
To address this question, we assume a the-
oretical decoder that reports a step change
of input current if the population firing
rate falls outside the 95% confidence
boundary of pre-step distribution (Fig.

5A,B) (for details, see Materials and Methods). In our experi-
ments, the background noise was uncorrelated across neurons;
therefore, we are dealing with the idealized case of a population of
N uncorrelated neurons. Analysis of this idealized situation is
both useful and necessary as a starting point for studying popu-
lation responses of cortical neurons that exhibit weak cross-
correlations or decorrelated firing (Greenberg et al., 2008; Renart
et al., 2010). Using the data from the step experiments (Fig. 1), we
calculated for this decoder the probability of step detection as a
function of the number of neurons that receive the common
current step (equivalent to the number of realizations N) and
time delay T after the step onset. Figure 5, C and D, illustrates that
a small current step can be detected in the firing of 7400 neurons
with 88% probability within the first millisecond after the step
onset and with �99% probability within 2 ms after the onset. The
functional dependence of detection probability on the time
elapsed after the step onset (Fig. 5C) or on the number of neurons
N in the population (Fig. 5D) can be well approximated by a tanh
function, as can be expected from a decoder operating on two
binomial distributions with different stationary rates. In the fir-
ing of 3700 neurons, the input current step is detected with a
probability of 73% within 1 ms and with �95% within 2 ms after
the onset. Even in the firing of �2000 neurons, the step is reliably
detected (�95%) within no more than 3 ms. Similar results were
obtained when the data from Figure 2 with low, intrinsic-only
noise were used: a population of �2000 neurons can reliably

Figure 5. Detection of population firing rate changes induced by changes of the mean input current. A, Illustration of step encoding in
the population firing rate of N neurons. Top to bottom, Timing of current steps; spike responses of neurons 1 . . . N, with vertical bars
representing individual spikes and the resulting peristimulus time histogram of the population firing rate (bottom, data from Fig. 1 E). B,
Illustration of a theoretical decoder. Binomial distributions P(N, v1T ) of spike counts before the step, P(N, v2T ) after the step and its
cumulative distribution CDF(P(N, v2T )). From the latter, the probability that after-step spike count is outside the 95% boundary of the
pre-step distribution is determined (horizontal arrow). This corresponds to the probability of step detection with 95% confidence. C, D,
Probabilityofstepdetectionversustimeaftersteponset(C)andnumberofneurons(D)ascalculatedfromdatainFigure1C–Fandaveraged
across conditions (1– 4). Circles denote the data points and solid lines denote fits of the form f( T) � tanh(bT ) or f( N) � a tanh(bN ),
respectively.Notethatapopulationof7400neurons(equivalenttothenumberofrealizations)candetect88%ofstepswithinthefirst1ms.
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detect the step onset within no more than 3 ms, and a population
of 3700 neurons detects the step onset within 1 ms with 75%
accuracy (data not shown). These results show that rapid detec-
tion of subtle input changes is robust over a broad range of am-
plitudes of membrane potential “noise” fluctuations. Thus,
populations of 2000 or more cortical neurons can operate on an
ultrafast timescale of 1–2 ms, conveying even minor input
changes on a timescale significantly faster than the membrane
time constant of the neurons.

Discussion
In this study, we demonstrate that populations of neurons in rat
neocortex (1) can change their firing rate in response to small
step-like changes of the mean input current very fast, within 1–2
ms and (2) can encode in their firing periodic signals up to fre-
quencies of 200 –300 Hz, in vivo and in vitro. Results obtained in
both time and frequency domains imply ultrafast, submillisec-
ond timescale of population responses. We further show that (3)
populations consisting of a few thousand neurons can reliably
detect small changes of mean input within 1–2 ms.

Ultrafast timescale of population response in theory
and experiments
Our results provide direct evidence that incoming signals, repre-
sented as changes of the mean input current, could be detected
within 2 ms in the population firing of �2000 neurons and
within 1 ms in a population of �7000 neurons. Although it is
plausible to assume that low-pass filtering by the membrane
could carry over to the firing rate dynamics, we show that neuro-
nal ensembles are capable of operating on a timescale signifi-
cantly shorter than the membrane time constant. The fast
encoding is not limited to strong synapses (Galarreta and Hestrin
2001), but already a signal with an amplitude of typical cortical
unitary postsynaptic current of 20 pA (Stern et al., 1992; Hestrin,
1993) can change population firing rate on a millisecond time-
scale. Previously, such fast encoding has been considered possible
only for the variance-coded signals (Silberberg et al., 2004) defin-
ing the prevailing dogma of the field that variance encoding is
superior to mean encoding in transmitting fast signals. This
dogma was primarily based on the observation that the firing rate
response to a small mean current change develops slower than the
response to a large change of the input variance and was partly
supported by high cutoff frequency in responses to periodic vari-
ance modulation (Boucsein et al., 2009). Despite the fact that the
timescale of the initial mean-induced firing rate transient has
neither been quantified nor sufficiently resolved experimentally,
the ultrafast transmission of rate encoded signals was deemed
impossible. Here we refute this notion, showing that subtle
changes of the mean input can be detected by populations of
cortical neurons on a millisecond scale. Thus, mean-encoding
channel and rate encoding in general can operate with subtle
signals on an ultrafast timescale. We corroborate this conclusion
by demonstrating that the population firing rate of neocortical
neurons in vivo and in vitro can reliably encode frequencies up to
�200 –300 Hz, which is �50 times higher than the firing rate of
individual neurons. These results resolve the contradiction be-
tween two recent studies that arrived at several-fold different
estimates of cutoff frequency in responses of layer 5 pyramidal
neurons to periodic mean modulated signals (Koendgen et al.,
2008; Boucsein et al., 2009). Our results further extend these
findings showing that (1) weak high-frequency modulation in the
mean input can be reliably relayed by populations of layer 2/3
pyramids, which mediate communication between cortical re-

gions. (2) This input sensitivity is not restricted to in vitro condi-
tions, but rather neocortical neurons in vivo under natural
synaptic bombardment can reliably encode high-frequency in-
puts in their population firing rate. (3) The in vivo frequency
response is close to that in vitro obtained for noise with correla-
tion time constants of 5 and 50 ms. Because in our experiments in
the time domain (latency of responses to steps) and in the fre-
quency domain (frequency response function) were performed
under very similar conditions, i.e., on neurons of the same type,
using injection of the current stimuli of similar amplitudes, with
the same range of membrane potential fluctuations and the firing
rates, we can directly compare the response timescale measured
in these two paradigms. In a linear system, the response time of a
simple low-pass filter is related to the cutoff frequency fc as
1/(2�fc). The cutoff frequency fc � 200 –300 Hz assessed in our
experiments (Fig. 4) and in a recent study on layer 5 pyramidal
neurons (Koendgen et al., 2008), corresponds to a response time-
scale 	1 ms. This estimate is in agreement with the response
timescale found in current step experiments (Figs. 1–3), indicat-
ing that the assumption of linear response where the cutoff fre-
quency fc and response speed in the time domain are directly
related might hold for our experimental conditions. Thus, coher-
ent evidence from in vitro and in vivo measurements in the time
and frequency domains supports the conclusion that cortical
neuron populations can indeed communicate on an ultrafast
millisecond timescale using mean-coded signals.

Previous theoretical work showed that a population of the
most simple model neurons, LIF neurons (Tuckwell, 1988), can
faithfully represent input signals of arbitrary frequency in changes of
the firing rate (Brunel et al., 2001; Lindner and Schimansky-Geier,
2001; Naundorf et al., 2005a) and alter its firing rate instantaneously
in response to a small step-like change of the mean or variance of the
input current (Brunel et al., 2001). In contrast to the LIF model
neurons, which are equipped with an instantaneous spike genera-
tion mechanism, the response timescale successively decreases in
populations of conductance-based models if the timescales involved
in spike generation are increased to capture the activation kinetics of
sodium channels (Fourcaud-Trocmé et al., 2003). In all variations of
conductance-based Hodgkin–Huxley-type models and their ap-
proximations studied so far, the response to fast varying inputs of
frequencies f higher than the firing rate of individual neurons is
attenuated proportional to 1/f, thus limiting the reliably encoded
frequency range (Fourcaud-Trocmé et al., 2003; Fourcaud-Trocmé
and Brunel, 2005; Naundorf et al., 2005a). For an average firing rate
of 1–5 Hz, which is typical for cortical neurons, only input frequen-
cies up to �10–20 Hz could be reliably encoded by conductance-
based models (Fourcaud-Trocmé et al., 2003; Naundorf et al.,
2005a). The attenuation of responses to signals beyond fc of �10–20
Hz leads to a slow response timescale (�8–16 ms) that is close to the
membrane time constant (Fourcaud-Trocmé et al., 2003). Results
reported here demonstrate that populations of cortical neurons in
vitro and in vivo firing at �5 Hz can reliably encode low-amplitude
input signals varying at frequencies up to 200–300 Hz and detect
subtle changes of mean current on the corresponding ultrafast mil-
lisecond timescale. We propose to call this phenomenon the “Brunel
effect” because such ultrafast responses were first predicted by Nico-
las Brunel and coworkers and shown to be specific to integrate-and-
fire-type neuron models or more generally models with rapid spike
dynamics (Brunel et al., 2001; Fourcaud-Trocmé et al., 2003; Naun-
dorf et al., 2005a). We also confirmed the rapid population dynamics
in response to changes of input variance predicted by such models.
However, we observe these rapid firing rate changes only for large
changes of input variance. We find that a threefold increase of the SD
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evoked a fast population rate transient, whereas a 50% increase of the
SD did not lead to a measurable change of the population firing rate.
According to shot noise theory, the input current variance (�2) in a
balanced cortical network is proportional to the average firing rate
(van Kampen, 2007). This implies that a moderate 50% increase of
the SD necessitates a collective firing rate increase by 125%, and a
threefold increase of SD requires a dramatic ninefold increase of the
average firing rate in a network, associated with corresponding in-
crease of the metabolic energy demands.

Changing the mean or the variance: two viable strategies for
cortical communication?
Comparison of the population firing rate responses to changes of
the input mean or its variance revealed a substantial difference in
the response dynamics. Even small changes of the mean input
current induced an instantaneous change of population firing
rate at the step onset and a robust change of the stationary firing
rate. In contrast, only large changes in the input variance could
affect the population firing rate, whereby the response was pre-
dominantly transient with little stationary component. This dif-
ference in response dynamics indicates the intriguing possibility
of different computational strategies implemented in the neuro-
nal communication channels that are using mean-coded and
variance-coded signals. Population firing can be rapidly altered
either by even a minor change of the input mean or by an extraor-
dinarily large change of the input variance. Functionally, these
two encoding schemes could serve different purposes: the ultra-
fast detection of small mean current changes could underlie fast
cortical processing of rate-coded signals, whereas a variance en-
coding scheme could function as a filter that relays quickly only
strong network perturbations.
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