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Partial Breakdown of Input Specificity of STDP at Individual
Synapses Promotes New Learning
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Hebbian-type learning rules, which underlie learning and refinement of neuronal connectivity, postulate input specificity of synaptic
changes. However, theoretical analyses have long appreciated that additional mechanisms, not restricted to activated synapses, are
needed to counteract positive feedback imposed by Hebbian-type rules on synaptic weight changes and to achieve stable operation of
learning systems. The biological basis of such mechanisms has remained elusive. Here we show that, in layer 2/3 pyramidal neurons from
slices of visual cortex of rats, synaptic changes induced at individual synapses by spike timing-dependent plasticity do not strictly follow
the input specificity rule. Spike timing-dependent plasticity is accompanied by changes in unpaired synapses: heterosynaptic plasticity.
The direction of heterosynaptic changes is weight-dependent, with balanced potentiation and depression, so that the total synaptic input
to a cell remains preserved despite potentiation or depression of individual synapses. Importantly, this form of heterosynaptic plasticity is
induced at unpaired synapses by the same pattern of postsynaptic activity that induces homosynaptic changes at paired synapses. In computer
simulations, we show that experimentally observed heterosynaptic plasticity can indeed serve the theoretically predicted role of robustly pre-
venting runaway dynamics of synaptic weights and activity. Moreover, it endows model neurons and networks with essential computational
features: enhancement of synaptic competition, facilitation of the development of specific intrinsic connectivity, and the ability for relearning.
We conclude that heterosynaptic plasticity is an inherent property of plastic synapses, crucial for normal operation of learning systems.

Key words: Hebbian learning; heterosynaptic plasticity; homosynaptic plasticity; neocortex; spike timing-dependent plasticity; synaptic
plasticity

Introduction
Plasticity is a universal property of synapses, vital for fundamen-
tal operations of the brain. Our present view of plasticity is heav-
ily biased toward input-specific (i.e., homosynaptic) changes,
which require presynaptic activation of the synapse during

the induction. Indeed, Hebbian-type homosynaptic plasticity
represents a cellular mechanism for associative learning and re-
finement of connectivity. However, theoretical and modeling
analyses have long recognized that Hebbian-type rules alone
make learning systems unstable and support only a weak degree
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Significance Statement

We show that spike timing-dependent plasticity in L2/L3 pyramids from rat visual cortex is accompanied by plastic changes in
unpaired synapses. These heterosynaptic changes are weight-dependent and balanced: individual synapses expressed significant
LTP or LTD, but the average over all synapses did not change. Thus, the rule of input specificity breaks down at individual synapses
but holds for responses averaged over many inputs. In model neurons and networks, this experimentally characterized form of
heterosynaptic plasticity prevents runaway dynamics of synaptic weights and activity, enhances synaptic competition, facilitates
development of specific intrinsic connectivity, and enables relearning. This new form of heterosynaptic plasticity represents the
cellular basis of a theoretically postulated mechanism, which is additional to Hebbian-type rules, and is necessary for stable
operation of learning systems.
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of synaptic competition (von der Malsburg, 1973; Oja, 1982; van
Rossum et al., 2000; Gütig et al., 2003; Babadi and Abbott, 2010).
A theoretically suggested mechanism allowing a robust solution
to these problems is heterosynaptic plasticity: changes at synapses
that were not active during the induction of homosynaptic plas-
ticity. Heterosynaptic plasticity is typically implemented in mod-
els as the normalization of synaptic weights, which affects all
synapses of a cell (von der Malsburg, 1973; Oja, 1982; K. D.
Miller, 1996; for recent review, see Fiete et al., 2010; Chistiakova
et al., 2014). Indeed, strong afferent tetanization may lead to het-
erosynaptic plasticity at synapses located on the dendritic tree far
away from the tetanized inputs (Lynch et al., 1977; Dunwiddie and
Lynch, 1978; Abraham and Goddard, 1983; Müller and Swandulla,
1995). However, in experiments with spike timing-dependent plas-
ticity (STDP), only local changes at the synapses surrounding acti-
vated inputs have been reported (Schuman and Madison, 1994;
Engert and Bonhoeffer, 1997; Royer and Paré, 2003). Experimental
evidence and characterization of a form of heterosynaptic plasticity
that accompanies STDP and occurs cell-wide, thus having potential
to play a role in maintaining homeostasis of synaptic weights over
all synapses of a cell, are lacking. A possible candidate is a form of
plasticity that can be induced in cortical neurons by the purely
postsynaptic protocol of intracellular tetanization: bursts of
depolarization-induced spikes without any presynaptic stimula-
tion (Volgushev et al., 1997, 2000; Lee et al., 2012; Chen et al.,
2013). In this new study, we asked: (1) whether a similar type of
heterosynaptic plasticity accompanies the induction of homos-
ynaptic STDP; (2) what the physiological properties of this form of
heterosynaptic plasticity are; and (3) which computational roles it
could serve. In experiments with layer 2/3 pyramidal neurons from
slices of rat visual cortex, we describe and characterize, for the first
time, a novel form of heterosynaptic plasticity that accompanies the
induction of STDP but occurs in nonactive synapses. Using com-
puter simulations, we demonstrate that this type of experimentally
observed plasticity introduces vital computational features to the
model neurons and networks. We suggest that heterosynaptic plas-
ticity accompanying induction of homosynaptic changes is a com-
mon feature of plastic synapses in the nervous system. It serves
theoretically predicted roles in endowing neuronal systems with op-
erational stability, permitting repetitive learning and enabling dy-
namic representations of sensory environments.

Materials and Methods
Slice preparation. All experimental procedures used in this study were in
compliance with the National Institutes of Health regulations and were ap-
proved by the Institutional Animal Care and Use Committee of the Univer-
sity of Connecticut. Details of slice preparation and recording were similar to
those used in previous studies (Volgushev et al., 2000; Lee et al., 2012; Chen
et al., 2013). Wistar rats (15–32 d old) of either sex were anesthetized with
isoflurane, decapitated, and the brain was quickly removed and placed into
an ice-cold oxygenated ACSF solution, containing the following (in mM):
125 NaCl, 25 NaHCO3, 25 glucose, 3 KCl, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2,
bubbled with 95% O2/5% CO2, pH 7.4. Coronal slices (350 �m thickness)
containing visual or auditory cortex were prepared from the right hemi-
sphere. Slices were allowed to recover for at least an hour at room tempera-
ture. For recording, individual slices were transferred to a recording chamber
mounted on an Olympus microscope equipped with infrared differential
interference contrast optics. In the recording chamber, slices were sub-
merged in oxygenated ACSF at 30°C-32°C.

Intracellular recording and synaptic stimulation. Intracellular record-
ings in the whole-cell configuration were made from layer 2/3 pyramidal
cells from visual or auditory cortex using patch electrodes (4 –7 M�)

filled with a potassium-gluconate-based solution, containing the
following (in mM): 130 K-gluconate, 20 KCl, 10 HEPES, 10 Na-
phosphocreatine, 4 Mg-ATP, 0.3 Na2-GTP, pH 7.4 with KOH. Layer 2/3
pyramidal neurons were selected for recording using differential inter-
ference contrast microscopy. Our previous work with biocytin labeling
and morphological reconstruction of recorded neurons demonstrated
reliability of pyramidal cell identification using differential interference
contrast microscopy (Volgushev et al., 2000).

Two pairs of stimulating electrodes (S1 and S2) were placed in layer 4,
below the layer 2/3 recording site. Stimulation current intensities were
adjusted to evoke monosynaptic EPSPs in the layer 2/3 cell. We used
paired-pulse stimulation protocol with a 50 ms interpulse interval.
Paired stimuli were applied to S1 and S2 in alternating sequence once per
7.5 s, so that each input was stimulated with paired pulses each 15 s.
Small-amplitude hyperpolarizing pulses were applied before S1 stimuli
to assess the input resistance. EPSPs in the layer 2/3 cell induced by layer
4 stimulation were recorded during a 10 –12 min control period. Follow-
ing the control period, a pairing procedure was applied. During the pair-
ing procedure (Chistiakova and Volgushev, 2009), a burst of five action
potentials evoked by short depolarizing pulses (5 ms, 100 Hz) was evoked
with a 10 ms delay after stimulation of one of the inputs (either S1 or S2,
alternating in different neurons). The current intensity (0.4 nA–1.1 nA)
was adjusted to reliably evoke spikes in the burst. Only one of the test
inputs was stimulated during the pairing. The other input (S2 or S1) was
not stimulated during the pairing procedure, and is referred to as “un-
paired.” The pairing of presynaptic activation with postsynaptic spiking
was repeated 50 times (see Fig. 1A). The pattern of postsynaptic firing
during the pairing procedure was similar to postsynaptic firing during
the purely postsynaptic protocol of intracellular tetanization used in our
prior studies of heterosynaptic plasticity (Volgushev et al., 2000; Chistia-
kova and Volgushev, 2009; Lee et al., 2012; Chen et al., 2013). After the
pairing procedure, alternating synaptic stimulation of the two inputs was
resumed, and EPSPs evoked by the test stimuli were recorded for another
30 – 60 min.

Database and data analysis. Electrophysiological results presented here
(see Figs. 1, 2) include a total of N � 170 inputs to 108 neurons. Comparison
data for synaptic changes induced by intracellular tetanization (bursts of
postsynaptic action potential evoked by short depolarizing pulses without
presynaptic stimulation) include a total of N � 136 inputs (N � 60 inputs to
41 neurons from Chen et al., 2013 and N � 76 inputs to 50 neurons from Lee
et al., 2012). All inputs included in the analysis fulfilled the following criteria:
(1) stability of EPSP amplitudes during the control period, (2) stability of the
membrane potential throughout the recording, and (3) stability of the onset
latency and kinetics of the rising slope of the EPSP. EPSP amplitudes were
measured as the difference between the mean membrane potential during
two time windows. The first time window was placed before the EPSP onset,
and the second time window was placed just before the peak of the rising
slope of the EPSP. Amplitude of the second EPSP in paired-pulse stimulation
paradigm was measured using windows of the same duration but shifted by
the length of interpulse interval (50 ms). The paired-pulse ratio (PPR) was
calculated as the ratio of averaged amplitude of the EPSP evoked by the
second pulse divided by the averaged amplitude of the EPSP evoked by the
first pulse.

For assessing changes of synaptic transmission, amplitude of EPSPs
evoked by the first stimulus in a pair was used. The magnitude of plastic
changes was calculated as the ratio of average EPSP amplitude after the
pairing procedure divided by the average EPSP amplitude during the
control period. The criterion for plasticity was a significant ( p � 0.05,
Student’s t test) change in mean EPSP amplitude between the control and
postpairing time periods.

Model of pyramidal neuron. For all simulations, we used an established
reduced model of a cortical pyramidal cell (Bazhenov et al., 2002; Chen et
al., 2012, 2013; Lemieux et al., 2014). This model was first proposed as
a reduction of a multicompartmental pyramidal cell model and consists
of two electrically coupled compartments, dendritic and axosomatic
(Mainen and Sejnowski, 1996). The current balance equations for the
two compartments of the model are as follows:

Cm�dVS/dt� � � g�VS � VD� � IS
int (1)
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Cm�dVD/dt� � gleak�VD � Eleak� � g�VD � VS� � ID
int � Isyn (2)

where Cm is the membrane capacitance, VS and VD is the membrane
potential in axosomatic and dendritic compartments, respectively, g is
conductance between the two compartments, IS

int is the sum of all active
intrinsic currents in axosomatic compartment, ID

int is the sum of all active
intrinsic currents in dendritic compartment, and I syn is the sum of syn-
aptic currents. Because the kinetics of all currents in the axosomatic
compartment are much faster than the kinetics of all currents in the
dendritic compartment, the membrane potential in axosomatic com-
partment VS can be set at equilibrium state. Indeed, using singular per-
turbations analysis, it can be shown that the state variable Vs quickly
reaches the manifold of slow motion defined by equation dVs/dt �
F(Vs) � 0, thus, Equation 1 can be substituted by the following:

g�VS � VD� � � IS
int (3)

This reduced model closely matches the spiking patterns of different
classes of cells and has been successfully used in previous modeling net-
work studies (Chen et al., 2012, 2013; Lemieux et al., 2014).

In the axosomatic compartment, the model contained fast Na �

current, INa (gNa � 3000 mS/cm 2), persistent Na � current, INa(p)

(gNa(p) � 0.07 mS/cm 2), and a fast delayed rectifier K � current, IK (gK

� 200 mS/cm 2). In the dendritic compartment, the model contained
fast Na � current, INa (gNa � 1.5 mS/cm 2) persistent Na � current,
INa(p) (gNa(p) � 0.07 mS/cm 2), a slow voltage-dependent, noninacti-
vating K � current, IKm (gKm � 0.01 mS/cm 2), a slow Ca2�-
dependent K � current, IKCa (gKCa � 0.3 mS/cm 2), a high-threshold
Ca2� current, IHVA (gHVA � 0.01 mS/cm 2), and a K � leak current,
IKL (gKL � 0.0025 mS/cm 2). Membrane capacitance was Cm � 0.75
�F/cm 2, and leak conductance was gL � 0.033 mS/cm 2. Equlibrium
potentials were as follows: ENa � 50 mV, EK � �95 mV, Eleak� �68
mV, ECa � 140 mV. For all currents, the voltage and Ca2�-dependent
kinetics are listed by Chen et al. (2012).

Synaptic currents. A total of 100 AMPA-type synapses were located at
the dendritic compartment (see Fig. 3A). The synaptic current at each
synapse was simulated by first-order activation kinetics as follows:

Isyn � Wsyn	O
�V � Esyn� (4)

where Wsyn is synaptic weight and E syn is the reversal potential (E syn �
0 mV). The synaptic weight was defined in the range between 0 mS/cm 2

and a maximum of 0.0303 mS/cm 2. The initial weights were randomly
assigned to the 100 synapses from a Gaussian distribution with mean
equaling 0.015 mS/cm 2 and SD equaling 0.003 mS/cm 2. The fraction of
open channels [O] is calculated according to the following:

d	O
/dt � ��1 � 	O
� 	T
 � �	O
 (5)

	T
 � AH�t0 � tmax � t�H�t � t0� (6)

where H is Heaviside (step-) function, t0 is the time instant of receptor
activation, t is simulation time, A � 0.5, and tmax � 0.3 ms. The rate
constants, � and �, are 1.1 ms �1 and 0.19 ms �1, respectively.

A simple phenomenological model characterizing short-term depres-
sion of intracortical excitatory connections was also included in the cur-
rent model. According to this model, a maximal synaptic conductance
was multiplied by the depression variable, D, which represents the
amount of available synaptic resources. Here, D � 1 �(1 �Di (1 �U ))
exp (�(t �ti)/�), where U � 0.07 is the fraction of resources used per
action potential, � � 700 ms is the time constant of recovery of the
synaptic resources, Di is the value of D immediately before the ith event,
and (t�ti) is the time after ith event.

STDP. STDP was implemented as in previous modeling studies (Song
et al., 2000; Kempter et al., 2001; Rubin et al., 2001; Song and Abbott,
2001). It is assumed that every synaptic pairing event can potentially
trigger a change of synaptic weight and that the direction and amount of
synaptic modification are determined by the time difference between
presynaptic and postsynaptic spiking events. If a presynaptic spike oc-
curred before a postsynaptic spike within a certain time window, the
synaptic weight increased. If a presynaptic spike occurred after a post-

synaptic spike within a certain time window, the synaptic weight de-
creased. This spike timing-dependent plasticity was implemented by the
following equations:

dWsyn� � a��exp� � �t post � t pre�/���� (7)

dWsyn� � � a��exp��t post � t pre�/���� (8)

In Equations 7 and 8, dWsyn
� and dWsyn

� are the change of synaptic
weight, a� and a� are the maximal amplitude of potentiation and depres-
sion that could be induced by a single pair of presynaptic and postsyn-
aptic spikes, t post and t pre are the timing of occurrence of postsynaptic
and presynaptic spikes, and � � and � � are the time constants of synaptic
potentiation and synaptic depression. As a standard setting, we used
STDP with symmetrical potentiation and depression windows: a� and a�

� 0.001 mS/cm 2, and � � and � � � 20 ms (Fig. 3B1).
Heterosynaptic plasticity. Heterosynaptic plasticity was implemented

according to rules derived from the results of in vitro experiments pre-
sented in this paper (see Figs. 1, 2) and results of our prior studies
(Volgushev et al., 2000; Chistiakova and Volgushev, 2009; Lee et al.,
2012). In slice experiments, induction of heterosynaptic plasticity re-
quired a rise of intracellular [Ca2�] in the postsynaptic neuron (Lee et al.,
2012). This was implemented in the model by introducing a calcium
threshold (0.4 �M in the standard model, tested range between 0.2 �M

and 0.8 �M). Our experimental results show that the effect of heterosyn-
aptic plasticity depended on initial state of synapse: synapses with ini-
tially low release probability have a tendency to undergo potentiation,
whereas synapses with initially high release probability tended to be de-
pressed or did not change after intracellular tetanization (Volgushev et
al., 2000; Chistiakova and Volgushev, 2009; Lee et al., 2012). Dependence
of heterosynaptic plasticity on intracellular [Ca2�] and initial synaptic
weight was implemented as follows. When intracellular [Ca2�] exceeded
the threshold level, the probability of occurrence of heterosynaptic plas-
ticity, Prob, was calculated as follows:

Prob�Wsyn� � 3000 	 �Wsyn � 0.015�2 � 0.1 (9)

where Wsyn represents current value of synaptic weight which ranged
from 0 to 0.03 mS/cm 2. According to Equation 9, synapses with inter-
mediate weights had lower probability to change, whereas synapses with
high or low weights had higher probability to change. Next, the magni-
tude of synaptic change dWsyn was calculated as follows:

dWsyn � � 1

1 � exp��Wsyn � �0.5 	 Wmax�� 	 100�

� 0.5 � 
 	 0.02� 	 0.0001 (10)

where Wsyn is the current synaptic weight, Wmax is the maximum value of
synaptic weight, and 
 is a random variable derived from the standard
normal distribution with 0 mean and SD of 3. The weight dependence of
the probability and magnitude of heterosynaptic changes are shown in
Figure 3B2.

Neural network model. Two neural networks consisting of 10 pyrami-
dal neurons (see Fig. 7) or 100 pyramidal neurons (see Fig. 8) were
constructed. In both networks, connections between neurons were excit-
atory (see Eq. 4) and random with connecting probability p � 0.5. Each
neuron thus contained two sets of synapses: those that received external
spike trains and those that received intrinsic spike events from other
neurons in the network. In both sets of synapses, STDP rules were im-
plemented with or without heterosynaptic plasticity (depending on the
experimental conditions).

Input spike trains. All external synapses in a single-cell or network
model were stimulated by independent spike trains representing presyn-
aptic activity. In different experiments, these spike trains had different
mean frequency and/or different level of correlation among them. Spike
trains were generated as follows. First, multiple spike train templates with
independent Poisson distributed interspike intervals were generated.
Next, an individual spike train was created by randomly selecting spiking
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events from these templates. The frequency of firing of input spike trains
was controlled by the total number of spikes selected from these tem-
plates in a certain time interval. The degree of correlation among input
spike trains was controlled by the total number of templates used.
When the number of templates was increased, the correlation among
input spike trains was reduced. After input spike trains were generated,
the cross-correlation among them was calculated.

In simulations for Figures 6 – 8, inputs to a model neuron were divided
in groups representing “stimuli.” Each stimulus was uniquely repre-
sented by higher average frequency (4 Hz) and correlation (0.91) of input
spike trains for one group of synapses compared with the background
activity at the other inputs (1 Hz, averaged correlation 0.34).

Principal component analysis. To quantify the network performance in
the discrimination task we used principal component analysis. We re-
corded spike responses of the model network to 10 individual realiza-
tions of each stimulus S1–S5 before, during and after the training.
Synaptic plasticity was turned off during the test. We counted spikes
generated by each neuron during 25 s of response and used principal
component analysis to project 10-dimensional space of the network re-
sponses to the first three principal components. In Figure 7E–I, each dot
represents response of the entire network to one stimulus presentation.

Results
Heterosynaptic changes accompany pairing-induced
homosynaptic plasticity
Our previous in vitro studies revealed that bursts of spikes evoked
in a neuron by depolarizing pulses without presynaptic stimula-
tion (intracellular tetanization) led to heterosynaptic plasticity:
weight-dependent changes at unstimulated synapses (Chistia-
kova and Volgushev, 2009; Chen et al., 2013; Chistiakova et al.,
2014). However, the vast majority of experimental paradigms for
studying synaptic plasticity include presynaptic activation of at
least some synaptic inputs to a cell. To establish a link between
heterosynaptic plasticity induced by purely postsynaptic intracel-
lular tetanization and plasticity induced by conventional proto-
cols, we asked whether heterosynaptic changes at nonactivated
synapses can be induced in parallel with the induction of asso-
ciative (Hebbian-type) plasticity. To test this hypothesis, we re-
corded EPSPs evoked by stimulation of two independent synaptic
inputs in layer 2/3 pyramidal neurons in slices of rat visual cortex.
We used a well-established STDP protocol to induce LTP at one

Figure 1. Plasticity induced by a pairing procedure (STDP) in paired (homosynaptic) and unpaired (heterosynaptic) synapses. A, A scheme of the STDP protocol. A burst of five action potentials
induced by short depolarizing pulses (5 ms, 100 Hz) was applied with a 10 ms delay after stimulation of one synaptic input (“Paired”). The pairing was repeated 50 times. The other synaptic input
(“Unpaired”) was not stimulated during the pairing, so plastic changes in these synapses were heterosynaptic. B–D, Examples of homosynaptic LTP in paired synapses (B) as well as heterosynaptic
LTP (C) and heterosynaptic LTD (D) in unpaired synapses induced by the STDP protocol in layer 2/3 pyramidal neurons. Red or cyan traces represent EPSPs before the pairing. Dark blue traces represent
EPSPs after the pairing (averaged over the periods marked by horizontal bars). Time course shows amplitudes of individual EPSPs (dots) and averages of 10 consecutive responses (filled circles).
E, F, Time course of amplitude changes averaged over 99 paired synaptic inputs (E; homosynaptic changes) and 71 unpaired inputs (F; heterosynaptic changes). Filled circles represent 1 min
averages. Horizontal bars indicate � SEM. B–F, Gray vertical bars represent the period of the STDP procedure. Dashed horizontal lines indicate averaged EPSP amplitude in control.
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of the inputs to the neuron (Fig. 1A). The STDP protocol induced
a robust LTP in the paired synaptic inputs (149% of control in
Fig. 1B, example; and 141.9 � 57.9%, average � SD, in N � 99
experiments, p � 0.001, Figs. 1E, 2D). Importantly, significant
changes of response amplitude (p � 0.05) were not restricted to
the paired synapses but could occur also at unpaired synapses,
which were not stimulated during the pairing procedure (Fig. 1A,
cyan). Individual unpaired synaptic inputs showed significant
LTP (Fig. 1C; 153% of control) or LTD (Fig. 1D; 68% of control),
or did not change. However, consistent with the notion of input
specificity of synaptic plasticity (Bliss and Collingridge, 1993),
changes of EPSP amplitudes averaged over all unpaired synaptic
inputs were not significant (112.7 � 40.1% of control, N � 71,
not significant; Figs. 1F, 2D). We interpret these results as indic-
ative of the balanced nature of synaptic changes at unpaired syn-
apses, so that potentiation and depression cancelled each other
on the average. This interpretation is consistent with a meta-
analysis of published data (Chistiakova et al., 2014).

Next, we asked what the physiological properties of this form
of heterosynaptic plasticity are. Plastic changes in both paired
and unpaired synapses correlated with the initial PPR (the ratio
of the amplitude of responses evoked by the second and the first
pulses in a paired-pulse paradigm). PPR is an index of synaptic
release inversely related to the release probability. We found that
synapses with initially high PPR (low release probability, weak
synapses) had a tendency to be potentiated, whereas synapses
with initially low PPR (high release probability, strong synapses)
had a tendency to be depressed or unchanged (Fig. 2A; r � 0.39,
N � 99, p � 0.001 for paired inputs; and r � 0.26, N � 71, p �
0.05 for unpaired inputs). This weight dependence of the direc-
tion and magnitude of synaptic changes was similar to weight
dependence of plastic changes induced by postsynaptic intracel-
lular tetanization described in our previous studies (Volgushev et
al., 2000; Chistiakova and Volgushev, 2009; Lee et al., 2012; Chen
et al., 2013; Chistiakova et al., 2014). The pairing procedure
shifted the entire distribution of synaptic changes upward toward
potentiation, as indicated by the upward shift of the regression
line for the paired synapses (Fig. 2A). This interpretation was

substantiated by the increased frequency of occurrence of LTP
and decreased frequency of LTD in the paired synapses (67%, 66
of 99 cases of LTP; and 12%, 12 of 99 of LTD) compared with
unpaired synapses (41%, 29 of 71 cases of LTP; and 28%, 20 of 71
of LTD, p � 0.001 for paired vs unpaired comparison; Fig. 2B).

Frequency of occurrence of LTP and LTD in the unpaired syn-
apses in STDP experiments was comparable with that observed after
purely postsynaptic intracellular tetanization (Fig. 2B, cyan and
green bars; �2 test, not significant for comparison of unpaired vs
intracellular tetanization). Interestingly, the magnitude of potentia-
tion or depression in synapses, which showed significant amplitude
changes (p � 0.05), was similar in all three groups: paired, unpaired,
and after intracellular tetanization (Fig. 2C). Thus, significant aver-
aged LTP of paired inputs was due to the more frequent occurrence
of LTP and less frequent LTD induced by the pairing procedure (Fig.
2B; p � 0.001 for paired vs unpaired, and paired vs intracellular
tetanization) and not due to a greater magnitude of plastic changes
in individual synapses (Fig. 2C). During a pairing procedure, only a
small portion of inputs at a given cell are stimulated. Therefore,
overall synaptic changes should be dominated by plasticity in un-
paired synapses. Because plastic changes in unpaired synapses are
balanced on average, the cumulative synaptic input to the cell will
change little, close to the average of changes seen in the unpaired
synapses.

Homosynaptic (STDP) and heterosynaptic plasticity in a
neuron model
To study how synaptic weights are determined by the interplay
between homosynaptic and heterosynaptic plasticity, we built a
biophysically realistic neuron model of pyramidal cell receiving
100 excitatory synaptic inputs (Fig. 3A). Homosynaptic changes
followed STDP rules (Fig. 3B1). Heterosynaptic plasticity was
implemented in accordance with experimental data described
above, with weight-dependent probability of changes (Fig. 3B2,
blue line, Eq. 9) and weight-dependent direction and amplitude
of changes (Fig. 3B2, green line, Eq. 10). Figure 3 illustrates
changes of synaptic weights induced by a “pairing” protocol, in
which activation of a portion of synapses (synapses 91–100) was

Figure 2. Homosynaptic and heterosynaptic plasticity induced by the STDP procedure: Population analysis. A, Correlation between long-term changes of EPSP amplitude and initial PPR for paired
(N � 99, red, diamonds, r � 0.39, p � 0.001), and unpaired (N � 71, cyan, squares, r � 0.26, p � 0.05) synaptic inputs. B, Percentage of cases of LTP, LTD, or no changes in paired (N � 99, red)
and in unpaired (N � 71, cyan) synaptic inputs. For comparison, data for plasticity induced by intracellular tetanization are shown (N � 136, green; data from Chen et al., 2013). Columns and
numbers within them show percentage of inputs in each of the three experimental groups (paired, unpaired, and intracellular tetanization, color-coded; � 2 test, p � 0.001 for paired vs unpaired,
and paired vs intracellular tetanization). C, EPSP amplitude changes, in percentage of control, in synapses with significant LTP, LTD, or no significant changes. Data are mean � SEM. Data for the
three experimental groups (paired, unpaired, and intracellular tetanization) are color-coded. D, Averaged EPSP amplitude changes in three experimental groups (paired, unpaired, and intracellular
tetanization).
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followed (with a small and controlled delay) by a burst of post-
synaptic spikes induced by brief depolarizing pulses to the soma.
At the same time, other synaptic inputs to the neuron were ran-
domly active throughout the simulation with averaged frequency
of 1 Hz. In the model with STDP-only, paired inputs were rapidly
potentiated to the maximal value and remained saturated until
the end of the simulation (Fig. 3C; synapses 91–100). Unpaired
inputs changed little (Fig. 3C; synapses 1–90). Although het-
erosynaptic plasticity was not implemented in this model, some
of the unpaired inputs still changed, apparently because they
were occasionally active within STDP windows of postsynaptic
spikes (Benuskova and Abraham, 2007).

To compare weight dependence of synaptic changes in this
model to the same results of slice experiments, we used the ratio
of mean weight (0.015 mS/cm 2) over the initial weight as a proxy
of initial PPR measures in slice experiments (Fig. 2A). In the
model, scatter plots of synaptic weight changes against the ratio
of mean/initial synaptic weight revealed weight dependence of
changes in paired inputs, but no weight dependence of changes in
unpaired synapses (Fig. 3D). Absence of weight dependence of
changes in unpaired inputs in the STDP-only model was in con-
trast to the results derived from slice experiments (Fig. 2A). Next,

we applied exact same stimulation protocol (pairing of synapses
91–100 with bursts of postsynaptic spikes, and random activity in
synapses 1–90) to a model in which both STDP and heterosyn-
aptic plasticity were implemented. In this model, both paired and
unpaired synaptic inputs changed their weights and formed
clearly separate distributions; furthermore, no synapses were sat-
urated (Fig. 3E). The plot of synaptic changes against the ratio of
mean/initial weights revealed weight dependence of changes in
both groups of synapses, with the data points representing paired
inputs shifted upwards relative to the unpaired inputs (Fig. 3F).
In this plot (Fig. 3F, gray), we also show data for 150 randomly
selected intrinsic synapses (of total N � 5324 intrinsic synapses in
a network model) from a 100 neuron network model with rich
intrinsic connectivity (described below; see Fig. 8). This network
model was stimulated with diverse input patterns, leading to a
substantial variability of synaptic changes, a scenario that is closer
to the diversity of conditions experienced by real neurons. Sim-
ulation results with the model, including both STDP and het-
erosynaptic plasticity presented in Figure 3F, have a clear
similarity to the results of slice experiments (Fig. 2A).

Thus, model simulations show that a model with both STDP
and heterosynaptic plasticity reproduces experimental data bet-

Figure 3. Homosynaptic and heterosynaptic plasticity in a model neuron. A, A scheme of a model neuron receiving 100 synaptic inputs. B, Rules for synaptic changes include homosynaptic STDP
with dependence of the weight change on the timing between presynaptic and postsynaptic spikes (B1), and weight-dependent probability and weight change of heterosynaptic plasticity (B2; see
Eqs. 9, 10). C, E, Dynamics of synaptic weight changes in the model with STDP-only rules (C) and in the model with STDP and heterosynaptic plasticity (E). In all simulations, a subset of inputs
(synapses 91–100) was stimulated with a pairing protocol: synaptic activation was followed (after 10 ms) by a burst of spikes induced by short depolarizing pulses to the soma. The pairing procedure
was repeated 50 times, once per second. Remaining inputs to the neuron (synapses 1–90) were “unpaired” and were activated randomly with averaged frequency of 1 Hz. Right, Weight distributions
of synapses in the paired and unpaired groups, at the beginning (initial) and at the end (final) of the simulation. D, F, Correlation between synaptic weight changes and the ratio between the mean
weight (0.015 mS/cm 2) and initial weight of the synapse (this ratio is used as a proxy of the initial PPR measured in slice experiments), for paired and unpaired inputs from the simulations shown
in C, E. F, Gray circle symbols represent data for 150 synapses from a network simulation subject to different activity patterns (from Fig. 8C, F, a random sample of 150 synapses from N � 5324
intrinsic synapses).
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ter than the STDP-only model. Further, these simulation results
illustrate two basic points: (1) final distribution of synaptic
weights depends on the interaction between homosynaptic and
heterosynaptic plasticity; and (2) the model with both STDP and
heterosynaptic plasticity supports segregation of the weights of
synapses, which experienced distinct activity patterns.

Heterosynaptic plasticity promotes differentiation of
synaptic weights
We next explored the role of heterosynaptic plasticity in synaptic
competition and differentiation of synaptic weights. In these sim-
ulations, we did not use an explicit pairing protocol, but rather
modeled a more realistic scenario in which synaptic activity in-
duces action potentials in a neuron and may lead to synaptic
plasticity. We modeled a neuron receiving two groups of synaptic
inputs: “strongly” active, characterized by higher frequency or
cross-correlation of presynaptic firing; and “weakly” active, with
lower frequency or correlation of presynaptic firing (Fig. 4A,B).
In the STDP-only model, most of the tested patterns of presyn-
aptic firing induced runaway potentiation, so that both strongly
and weakly active inputs acquired similar weights, typically satu-
rated at the maximal weight (Fig. 4C,D). In contrast, in the model
with both STDP and heterosynaptic plasticity, synaptic weights
were not saturated but formed distinct distributions (Fig. 4E,F).
Even a small difference in correlation level (0.47 vs 0.5) or fre-
quency of presynaptic firing (0.5 vs 1 Hz, or 1 vs 2 Hz) between
the two groups resulted in the divergence of the final synaptic

weights. Importantly, the separation of the two distributions in-
creased with the increasing difference in the level of correlation or
rate of presynaptic firing (Fig. 4E,F, right panels). Thus, the
model with both STDP and heterosynaptic plasticity was able to
segregate weights of synapses experiencing different activity pat-
terns, with the difference in the final weights proportional to the
differences in the presynaptic activity.

Experimental evidence shows that plasticity rules may differ
across synapses (Nishiyama et al., 2000; Sjöström et al., 2001;
Zhou et al., 2005; Haas et al., 2006; Feldman, 2009) and that
plastic abilities of synapses may change over time (Abraham and
Bear, 1996; Abraham, 2008). Therefore, we next asked how dy-
namics of synaptic weight changes differ in two groups of syn-
apses with different plasticity rules. In these simulations, the
STDP rule was symmetrical in synapses of the first group but
depression-biased in the second group (Fig. 5A). Synapses of
both groups were activated with the same average frequency (3
Hz) and correlation (0.5). In the STDP-only model, the differ-
ence in STDP rules caused runaway dynamics of synaptic weights
to opposite extremes. As a result, the final steady-state weights of
synapses with symmetrical STDP were saturated at the maximal
value, and the weights of synapses with depression-biased STDP
were all close to 0 (Fig. 5B). Addition of heterosynaptic plasticity
to all synapses effectively prevented runaway dynamics and satu-
ration but did not preclude segregation of synaptic weights. At
the end of simulation, synapses with two different STDP rules
formed two clearly distinct distributions within the operation

Figure 4. Heterosynaptic plasticity facilitates segregation of the weights of synapses subject to diverse presynaptic activity. A, A scheme of the model neuron receiving two groups of synaptic
inputs that differ in the level of correlation or rate of firing. B, Examples of input patterns with different levels of correlation and averaged firing rates. C–F, Left panels, Distributions of synaptic
weights, initial (blue), and final after 200 s of simulation for synapses 1–50 (green) and 51–100 (red). Two groups of inputs differed by the level of cross-correlation (0.64 vs 0.47) in C, E and the
averaged firing rate (3 Hz vs 1 Hz) in D, F. Right panels, Averaged final synaptic weight for the two groups of synapses, with input activity indicated below the plots. Models with the STDP only rule
in C, D and models with STDP and heterosynaptic plasticity in E, F.
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range, with significantly different mean values (0.0193 � 0.001
mS/cm 2 vs 0.0123 � 0.0016 mS/cm 2, p � 0.001; Fig. 5C). In
the model without heterosynaptic plasticity, but with weight-
dependent probability of STDP, runaway dynamics were not pre-
vented, demonstrating that weight dependence of the probability
of synaptic changes alone is not sufficient for preventing runaway
dynamics. Addition of weight dependence of the potentiation in
the STDP rule (magnitude of potentiation window decreases for
stronger synapses, whereas depression window remains the same
for all synaptic weights) (van Rossum et al., 2000) could prevent
runaway dynamics. However, this solution was sensitive to spe-
cifics of STDP rules and weight dependence of potentiation, and
the model required fine-tuning to be stable (van Rossum et al.,
2000). Moreover, the weight dependence of STDP model was
able to segregate the weights of synapses receiving different input
activity patterns, without saturating the weights, in only a re-
stricted range of STDP rules and input patterns (data not shown).
In contrast, models with heterosynaptic plasticity robustly segre-
gated, but not saturated, synaptic weights for a broad range of
plasticity rules, input correlations, and rates.

In the above simulations (Fig. 5C), the rules of heterosyn-
aptic plasticity were the same for all synapses. Will synapses
governed by different rules of heterosynaptic plasticity still be
segregated? To address this question, we used the same STDP
rules in all synapses (Fig. 5D, left) but shifted the weight de-
pendence of heterosynaptic plasticity (see Eq. 10) to the right
in one group of synapses, and to the left in the other group
(Fig. 5D, magenta and cyan curves). Final equilibrium
weights of the two groups of synapses formed clearly separable
distributions with significantly different mean values
(0.0163 � 0.0012 mS/cm 2 vs 0.0228 � 0.00083 mS/cm 2, p �
0.001; Fig. 5E).

We concluded that synapses that experience different pat-
terns of presynaptic activity, or have differential abilities for
homosynaptic or heterosynaptic plasticity, can segregate their
weights. The final distribution of synaptic weights, as well as
the final weight of an individual synapse, are determined by
the competing driving forces introduced by the rules of ho-
mosynaptic and heterosynaptic plasticity (Fig. 5) and/or pat-
terns of presynaptic and postsynaptic activity (Figs. 3, 4).

Figure 5. Segregation of synapses expressing different plasticity rules. A, Diverse STDP rules for two groups of synapses. STDP with symmetrical windows for potentiation and depression for
synapses 51–100 (a� � a� � 0.0015 mS/cm 2; �� � � � � 40 ms), and depression-biased STDP for synapses 1–50 (a� � 0.001 mS/cm 2; �� � 20 ms; a� � 0.0025 mS/cm 2; � � � 60 ms).
B, C, Distributions of synaptic weights of synapses 1–50 and 51–100 at the beginning (initial, blue) and after 100 s of simulation (final, red) in STDP-only model (B) and in the model with both STDP
and heterosynaptic plasticity (C). D, The weight dependence of heterosynaptic changes was shifted right (positively shifted, magenta curve) for synapses 51–100 and to the left (negatively shifted,
cyan curve) for synapses 1–50. The STDP rule was the same in all synapses (a�� a�� 0.0015 mS/cm 2; ���� �� 40 ms). E, Initial and final distributions of synaptic weights in the model with
symmetrical STDP and positively (top) or negatively (bottom) shifted weight dependence of heterosynaptic plasticity. B, C, E, In all simulations, averaged rate of presynaptic firing was 3 Hz and
averaged cross-correlation between spike trains was 0.5.
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Heterosynaptic plasticity helps to extract the most frequently
presented pattern
In the previous sections, we tested models with stimulation pat-
terns that remain unchanged throughout the simulations. In
real-life scenarios, activity changes over time, such that some
patterns or combinations of stimuli are presented more often
than others. To study dynamics of synaptic weights and activity in

model neurons in such a realistic setting, we divided synaptic
inputs to a model neuron into 5 groups (20 synapses in each
group) representing 5 different “stimuli,” S1–S5 (Fig. 6). A stim-
ulus was defined by stronger activity within a selected group of 20
synaptic inputs (averaged firing rate 4 Hz, correlation 0.91) on
the background of weak activity in the remaining 80 inputs (1 Hz,
correlation 0.34). Stimuli were presented in repeated blocks. In

Figure 6. Heterosynaptic plasticity helps to extract the most frequently presented stimulus and allows relearning. A, Blocks of five “stimuli,” each stimulus defined by higher rate (4 Hz) and
correlation (0.9 � 0.01) of firing in 20 of 100 inputs. Spikes in the remaining 80 inputs occurred at 1 Hz, with correlation of 0.34 � 0.02. During the first training session, stimuli S1–S4 were
presented for 600 ms, and S5 for 1200 ms (A1), in each of 8 blocks. In the second session, S1 was presented for 1200 ms and S2–S5 for 600 ms in each block (A2). Inset, Scheme of model neuron
receiving input stimuli S1–S5. B, Weight changes of 100 synapses with STDP-only rules (a�� a�� 0.001 mS/cm 2; ���� �� 20 ms) during two training sessions. B1, In the first session, eight
blocks of stimuli with more frequent S5 (as in A1) were presented. B2, In the second session, four blocks of stimuli with more frequent S1 (as in A2) were presented. C, Averaged weights (�SD) of
synapses representing stimuli S1–S5 before learning (C1), after the first training session (C2) (one-way ANOVA: p � 0.0052 difference between groups, and p � 0.023, p � 0.036, p � 0.024, p �
0.008 for comparisons Group 5 vs Groups 1– 4, respectively), and after the second session (C3) (one-way ANOVA: p � 0.175 for difference between groups, and p � 0.1 for Group 1 vs Groups 2–5,
respectively). Dashed lines indicate averaged weights of synapses representing more frequent stimulus (S5 in C2 and S1 in C3). D, E, Synaptic weight changes and mean synaptic weights in the model
with STDP and heterosynaptic plasticity, before (E1), after (E2) the first training session (D1) ( p � 0.001 for difference between groups, and for comparisons of Group 5 vs Groups 1– 4), and after
(E3) the second training session (D2) ( p � 0.001 for difference between groups, and for comparisons of Group 1 vs Groups 2–5). Same stimuli and same representation as in B, C.
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each block, stimuli S1–S4 were presented for 600 ms each, fol-
lowed by a longer (1200 ms) presentation of S5 (Fig. 6A1).

In the STDP-only model, repeated presentation of the blocks
of stimuli led to potentiation of all synapses, whereby the wei-
ghts of synapses representing most frequent stimulus (S5, syn-
apses 80 –100 in Fig. 6B1) increased faster. The changes of synap-
tic weights first remained selective (see results of training with 8
blocks of stimuli in Fig. 6C2; one-way ANOVA, p � 0.0052 dif-
ference between groups, and p � 0.023, p � 0.036, p � 0.024, p �
0.008 for comparisons Group 5 vs Groups 1– 4, respectively).
However, this state was not stable: after presentation of addi-
tional stimulation blocks, synapses representing any stimulus,
both frequently and less frequently presented, became saturated
and segregation of synaptic weights effectively disappeared (data
not shown; p � 0.1 for all comparisons).

In contrast, the model equipped with both STDP and het-
erosynaptic plasticity was able to robustly segregate a group of
synapses representing the most frequent stimulus. These syn-
apses became significantly stronger than synapses representing
other stimuli after only 4 –5 blocks of stimulation (Fig. 6D1). This
difference remained significant for steady-state weight distribu-
tions (Fig. 6E2; one-way ANOVA, p � 0.001 for difference be-
tween groups, and for comparisons of Group 5 vs Groups 1– 4),
and importantly, was preserved after further presentations of the
same blocks of stimuli (data not shown).

Heterosynaptic plasticity allows relearning
Advantages of the model with both STDP and heterosynaptic
plasticity over the model with STDP-only rules became especially
clear in a paradigm of relearning. After presenting 8 blocks of
stimuli as described above, we ran a second training session, but
with an altered composition of the stimuli in the block so that a
different stimulus was presented for a longer time (S1 for 1200

ms, followed by S2-S5, each for 600 ms; Fig. 6A2). In the STDP-
only model, synaptic weights continued their trend toward the
maximal value, and most of the synapses were saturated after
presentation of 4 blocks of stimuli in the second training session
(Fig. 6B2,C3; one-way ANOVA, p � 0.175 for difference between
groups, and p � 0.1 for comparisons of Group 1 vs Groups 2–5).
In contrast, in the model with STDP and heterosynaptic plastic-
ity, the change of the stimulus configuration transformed the
dynamics of synaptic weights. The weights of synapses represent-
ing the new most-frequent stimulus (S1) increased, whereas
weights of synapses representing the previously learned stimulus
(S5) decreased (Fig. 6D2). After presentation of 4 blocks, a new
representation was built: synapses representing the new frequent
stimulus (S1) acquired significantly higher weights than synapses
representing other stimuli (Fig. 6E3; one-way ANOVA, p � 0.001
for difference between groups, and for comparisons of Group 1 vs
Groups 2–5).

Heterosynaptic plasticity prevents runaway dynamics and
allows relearning in a neuronal network
Having established the role of heterosynaptic plasticity in single-
neuron models, we next asked how heterosynaptic plasticity
affects dynamics of synaptic weights, evolution of activity, and
learning abilities in model networks.

We trained a generic network consisting of 10 identical neu-
rons (Fig. 7A), with a pattern of 5 stimuli (S1–S5; see description
above), so that each specific stimulus was presented to 2 neurons.
During the first episode of training, synaptic weights changed in
both the STDP-only model and the model with both STDP and
heterosynaptic plasticity, until reaching a steady state (Fig. 7B,C;
0 –50 s). Principal component analysis revealed that both models
built distinct representations of stimuli S1–S5, which could be
clearly discriminated from responses of the model neurons

Figure 7. Heterosynaptic plasticity allows relearning and segregation of learned patterns in a small network. A, A scheme of a simple network of 10 neurons. Each neuron receives 100 external
inputs organized in 5 groups of 20 (S1–S5, as in Fig. 6A, inset), and is connected to other neurons in the network with probability p � 0.5, as shown in connectivity matrix. B, C, Dynamics of synaptic
weights in 2 sample cells of the network during stimulation with different patterns of activity, as indicated. Each neuron received an individual, pseudo-random sequence of stimuli. Model with
STDP-only plasticity rules (B), and model with STDP and heterosynaptic plasticity (C). D, Synaptic weights in the 10 neurons of the network at the end of simulation, in the STDP-only model (black)
and in the model with STDP and heterosynaptic plasticity (magenta) learning rules. Dashed horizontal lines separate synapses to different neurons, synapses of cells 4 and 8 from B, C are indicated.
Only external inputs are shown here. Internal inputs were also plastic; but because of their low number, they did not contribute significantly to postsynaptic firing and are not shown. E–I, Principal
component analysis of responses of the network to test stimuli S1–S5, at the beginning of the simulation (E), and after the first (F ) and sixth (G) episodes of training in STDP-only model, and in the
model with STDP and heterosynaptic plasticity (H, I ). There is scale change between plots.
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(compare Fig. 7E with Fig. 7F,H). However, continuing training
with new input patterns (the same stimuli S1–S5 presented to
neurons in a different combination; see description above), re-
vealed a fundamental difference between two models in the
dynamics of synaptic weights and learning. In the STDP-only
model, training with each new pattern led to strengthening of an
additional set of synapses. By the end of simulation all synapses in
STDP-only model were at or close to the maximal value (Fig. 7B).
Distribution of synaptic weights did not reflect any distinct input
pattern (Fig. 7D, black line), and responses of STDP-only model
to different stimuli became indistinguishable (Fig. 7G). In the
model with STDP and heterosynaptic plasticity, synaptic weights
were redistributed after each change of the input pattern, such
that distribution of synaptic weights represented the most re-
cently trained stimulus (Fig. 7C). By the end of simulation, syn-
apses of the model with STDP and heterosynaptic plasticity were
not saturated. The last trained pattern was represented in synap-
tic weights (Fig. 7D, magenta line), and trained stimuli could be
discriminated from responses of the network model with STDP
and heterosynaptic plasticity (Fig. 7I).

These results show that the addition of heterosynaptic plasticity
allows neuronal networks to form reliable and distinct representa-
tions of trained input patterns and rebuild these representations ac-
cording to changing experience. This provides networks with the
ability to keep the configuration of synaptic weights up-to-date with
changing inputs and respond differentially to distinct stimuli.

Heterosynaptic plasticity promotes development of input-
related connectivity and response selectivity in networks of
interconnected neurons
To study the dynamics of synaptic weights and activity in a net-
work with strong intrinsic connectivity, we increased the number

of neurons in the network to 100. Each neuron received 50
(range 37–57) intrinsic synapses from other neurons (connection
probability � 0.5), and 60 external synapses, organized in three
groups of 20 synapses representing 3 stimuli (S1–S3). During one
training episode, each neuron received external input represent-
ing one of the stimuli S1–S3 or background activity. The training
consisted of 6 episodes, 50 s each, with the input pattern changing
between the episodes.

In the STDP-only model, each episode of training led to run-
away potentiation of external synapses corresponding to the
trained stimulus. The weights reached their maximum and
changed little after that, even when a different input pattern was
presented. By the end of all training episodes, all input synapses
were potentiated to the maximal value or close to it (Fig. 8B, left).
Additionally, intrinsic connections between neurons achieved
maximal, or close to maximal weights (Fig. 8B, right). Predomi-
nance of potentiation and saturation of intrinsic synapses in the
network with STDP-only plastic rules is clearly demonstrated by
the matrix of intrinsic network connections, with color-coded
synaptic weights (Fig. 8D,E).

In contrast to the runaway potentiation in the STDP-only
model, the evolution of synaptic weights in the same network but
equipped with STDP and heterosynaptic plasticity learning rules
revealed balanced dynamics (Fig. 8C,F). Input synapses changed
according to the stimulation pattern, with synapses representing
the stimulus acquiring the larger weights. Importantly, this rep-
resentation was dynamic and adjustable: changing of the training
pattern led to redistribution of the weights of input synapses
forming a new representation. At the end of training, the weights
of input synapses had a bimodal distribution, where stronger
synapses represented the stimuli delivered during the most recent
training episode (Fig. 8C, left). Intrinsic synapses between neu-

Figure 8. Heterosynaptic plasticity facilitates formation of connectivity patterns in a generic neuronal network. The generic network consisted of 100 neurons, each receiving 60 external inputs
(3 groups of 20 synapses representing S1–S3), and intrinsic synapses from other network neurons, with p � 0.5 connection probability. Each stimulus S1–S3 was uniquely represented by higher
average frequency (4 Hz) and correlation (0.91) of input spike trains for one group of synapses compared with the background activity at the other inputs (1 Hz, averaged correlation 0.34). A–C,
Distributions of weights of input synapses to all neurons of the network (N � 6000 synapses to 100 neurons), and all intrinsic synapses (N � 5324 synapses) at the beginning of simulations (A), after
training in the STDP-only model (B), and in the model with STDP and heterosynaptic plasticity (C). D–F, Matrix of intrinsic connections in the network, with color-coded synaptic weights: before
training (D), after training in the STDP-only model (E), and in the model with STDP and heterosynaptic plasticity (F ). The training consisted of 6 episodes, 50 s each, with input pattern changing
between the episodes. Pattern of presentation during training is shown in E, F (left; the same pattern of presentation in these two simulation tests; magenta represents S1; black represents S2; cyan
represents S3; white represents background). Before and after training, each stimulus was presented to all neurons of the network for 10 s, and averaged spiking frequency of response to each
stimulus was calculated and plotted for each neuron (D–F, right; magenta represents S1; black represents S2; cyan represents S3).
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rons of the network did not saturate, either. Their weight distri-
bution displayed a tail of stronger weights that were not present
initially (Fig. 8C, right). Analysis of the stimulation history re-
vealed that synapses between neurons, which experienced similar
stimulation acquired stronger weights (Fig. 8F). This is remark-
able because, although intrinsic synapses were not explicitly
activated by the input stimuli, the emerged pattern of stronger
connections reflects common “sensory” experience of neurons.

Training led to the development of profoundly different re-
sponse properties in the networks with or without heterosynaptic
plasticity. Before training, the naive network responded similarly to
all three stimuli (Fig. 8D, right). After training, responses of the
STDP-only model increased several-fold but remained nonselective
(Fig. 8E, right). In contrast, the network with STDP and heterosyn-
aptic plasticity developed selective responses after the same training.
Each neuron responded stronger to one (last-trained) stimulus. No-
tably, neurons that experienced background activity during the last
training episode(s), responded selectively to the stimulus presented
in the previous training episode (S2, cells 13–18) or an episode be-
fore it (S1, cells 1–12; Fig. 8F).

Discussion
We report that heterosynaptic changes of nonactivated synapses ac-
company the induction of STDP in neocortical neurons. Hence, the
postulate of input specificity of STDP, while holding true on average,
breaks down at the level of individual synapses. We characterize, for
the first time, key properties of this novel form of heterosynaptic
plasticity: weight dependence and balanced nature of potentiation
and depression. We further show that implementing this novel form
of heterosynaptic plasticity in model neurons and networks endows
the models with essential computational features. It effectively pre-
vents runaway dynamics of synaptic weights and activity, promotes
segregation of synaptic weights and synaptic competition, and en-
ables relearning and acquisition of new memories. Moreover, het-
erosynaptic plasticity promotes the development of selectivity of
neuronal responses and intrinsic connections in generic networks of
interconnected neurons.

Heterosynaptic changes accompany induction of STDP in
neocortical neurons
We show that a pre-before-post STDP protocol leads, along with
homosynaptic potentiation, to heterosynaptic plasticity in un-
paired synapses. Heterosynaptic changes were (1) weight-depen-
dent; their direction and magnitude correlated with initial PPR;
and (2) balanced; despite significant potentiation or depression
of individual synapses, EPSP amplitudes averaged over all un-
paired inputs (N � 71) were not significantly different from the
control period. These results constitute an important discovery
that weight-dependent and balanced heterosynaptic changes can
be induced not only by purely postsynaptic protocols, such as
bursts of spikes without presynaptic activation, as reported pre-
viously (Volgushev et al., 1997, 2000; Chistiakova and Volgushev,
2009; Lee et al., 2012; Chen et al., 2013), but also by conventional
STDP protocols.

Heterosynaptic changes apparently contradict the notion of
input specificity (Bliss and Collingridge, 1993), which maintains
that plasticity occurs only at synapses activated during the induc-
tion, whereas nonactive synapses should not change. Our results
suggest that heterosynaptic changes often remain unnoticed be-
cause they are bidirectional, and LTP and LTD occurring in in-
dividual synapses balance each other. Thus, the postulate of input
specificity, while holding true when heterosynaptic changes
over many synapses are pooled together, breaks down at the level

of individual synapses. This predicts that heterosynaptic changes
would have high variance. Published data support this conjec-
ture. Indeed, the variance of EPSP amplitude changes after
postsynaptic spike bursts without presynaptic stimulation was
reported to be very high, e.g., 93 � 39.7% (mean � SD, N � 7)
(Birtoli and Ulrich, 2004) and 105 � 49% (N � 6) (Birtoli and
Ulrich, 2004; Nevian and Sakmann, 2006). To explain such high
variance, there must have been significant LTP and LTD in indi-
vidual synapses (for review, see Fiete et al., 2010; Chistiakova et
al., 2014). The variance of synaptic changes in experiments with
plasticity induction protocols involving postsynaptic spiking was
significantly higher than that found over similar time periods in
experiments where postsynaptic spiking was not induced (Vol-
gushev et al., 2000). We conclude that heterosynaptic changes
depend on the postsynaptic firing and accompany the induction
of homosynaptic plasticity, and thus represent an inherent prop-
erty of plastic synapses.

Heterosynaptic plasticity endows model neurons with
essential computational features
Heterosynaptic plasticity with experimentally observed properties
(induction at nonactive synapses, weight dependence of the direc-
tion and magnitude, and balanced potentiation and depression) in-
troduces two essential computational properties to the neural
systems with plastic synapses: (1) it has a normalizing effect on syn-
aptic weights; and (2) it promotes synaptic competition. Functional
consequences of these properties include prevention of runaway dy-
namics of synaptic weights and activity, enhanced abilities for learn-
ing and relearning, and enhanced segregation of inputs and intrinsic
connections in neuronal networks.

The normalizing effect of heterosynaptic plasticity on synaptic
weights is due to the weight dependence of synaptic changes:
Strong synapses tend to depress, whereas weak synapses tend to
potentiate. This drives synaptic weights away from extreme val-
ues, toward an equilibrium point within the operational range.
This effect of heterosynaptic plasticity is different from a formal
mathematical normalization. Mathematical normalization pre-
serves total sum of synaptic weights and thus total synaptic drive
to a cell but does not prevent runaway potentiation or depression
of individual synaptic weights. Indeed, training in the models
implementing normalization often leads to runaway dynamics of
individual synaptic weights resulting in their bimodal distribu-
tion, with the “winner” synapses bunched around the maximal
weight and the other synapses gathered around 0 (Song et al.,
2000; van Rossum et al., 2000; Gütig et al., 2003; Morrison et al.,
2007). In contrast, in our model implementing this novel form of
heterosynaptic plasticity, individual synapses do not express run-
away dynamics, and the weights of all synapses remain within the
operation range. An important consequence of unsaturated
weights is the ability for further learning. Indeed, our results
demonstrate that models equipped with both STDP and het-
erosynaptic plasticity are able to relearn and to update their syn-
aptic weights in accordance with changes of the external inputs.

The enhancement of synaptic weight segregation and synaptic
competition by heterosynaptic plasticity can be understood as
follows. For activated synapses, homosynaptic potentiation or
depression prevails, pushing their weights toward the maximum
or minimum. Heterosynaptic plasticity, triggered by the same
episodes of activity that induce homosynaptic changes, imposes
background forces that drive the weights of inactive synapses
away from the extremes, toward an equilibrium value. As a result,
changes of active versus inactive synapses are driven by contrast-
ing forces, and have different target weights. In this scenario,
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synapses compete for maintaining their weights at the level set by
homosynaptic plasticity but will be driven to the heterosynaptic
equilibrium when other synapses cause postsynaptic spiking
(Chistiakova et al., 2014, 2015). Modeling results from the pres-
ent study provide evidence for such a scenario and show that, in
models equipped with STDP and heterosynaptic plasticity, the
segregation of synaptic weights can be caused by a broad range of
factors, including frequency and correlation of presynaptic firing
and details of the plasticity rules. This predicts that synaptic
weights will be distributed broadly over the operation range
rather than near extreme values. Experimental evidence supports
this prediction (Sjöström et al., 2001; Song et al., 2005; Harding-
ham et al., 2007).

Through preventing the saturation of synaptic weights and
promoting synaptic competition, heterosynaptic plasticity pro-
vides neurons and neuronal networks with the ability for contin-
ued learning and building dynamic representations of changing
environments. In studies of decision making (Skorheim et al.,
2014a) and auditory processing (Skorheim et al., 2014b), a model
trained by the sequence of inputs reached synaptic weight satu-
ration quickly and lost its ability for further learning unless het-
erosynaptic plasticity-like homeostatic rules were implemented.
Our results show that, in networks of interconnected neurons,
heterosynaptic plasticity is necessary for formation and refine-
ment of intrinsic connectivity and development of response se-
lectivity. This is consistent with results of a recent study, which
showed that orchestrated action of multiple forms of plasticity,
including heterosynaptic plasticity, is necessary for formation of
assemblies in a model of a recurrent spiking network (Zenke et
al., 2015). We conclude that heterosynaptic plasticity may play a
role in maintaining the ability for new learning in a broad range
of learning tasks and developmental processes.

The need for fast-scale mechanism(s) which prevent runaway
dynamics of activity and support synaptic competition has been
long appreciated in theoretical and modeling studies (von der
Malsburg, 1973; Oja, 1982; K. M. Miller, 1994; K. D. Miller,
1996). A number of candidate homosynaptic mechanisms were
suggested, including fine-tuning of STDP rules (Song et al., 2000;
Kempter et al., 2001; Gütig et al., 2003; Babadi and Abbott, 2010)
and activity dependence (Abraham and Bear, 1996; Yeung et al.,
2004; Clem et al., 2008) or weight dependence of plastic rules (Bi
and Poo, 1998; van Rossum et al., 2000; Hardingham et al., 2007).
Other suggested heterosynaptic mechanisms include competi-
tion for resources (Frey and Morris, 1997, 1998; van Ooyen, 2001;
Elliott and Shadbolt, 2002; Fonseca et al., 2004), or locally bal-
anced potentiation and depression (Royer and Paré, 2003). In
model simulations, stabilization of activity and synaptic compe-
tition can be attained by normalization implemented directly
into the equations for synaptic weight changes (von der Mals-
burg, 1973; Oja, 1982; K. M. Miller, 1994; K. D. Miller, 1996; Fiete
et al., 2010; Zenke et al., 2013). Our study suggests a novel phys-
iological mechanism for solving these problems and mediating
the vital theoretically predicted features of plastic synapses. Het-
erosynaptic plasticity with experimentally observed features in-
troduces robust stability and synaptic competition as inherent
properties of neurons with plastic synapses. It keeps synaptic
weights in operation range, promotes synaptic competition, and
endows learning neurons and networks with essential computa-
tional properties, allowing them to build and relearn representa-
tions of input stimuli. We conclude that the ability to undergo
heterosynaptic changes is an inherent and indispensable feature
of plastic synapses.

Outlook
The weight of a plastic synapse is determined by multiple factors:
the patterns of presynaptic and postsynaptic activity, and the
interaction between diverse mechanisms mediating homosynap-
tic and heterosynaptic plasticity. What are the rules of interaction
between different forms of plasticity? How do these rules depend
on changes of neuromodulatory background and on the related
alterations of brain state? It is tempting to speculate that modu-
lation of the balance between homosynaptic and heterosynaptic
plasticity may underlie state-specific changes of the learning
abilities.

Brain networks are built of morphologically and electrophysi-
ologically diverse neurons, playing distinct roles in neuronal
computations. What are type-specific rules and what are common
features for homosynaptic and heterosynaptic plasticity across neu-
rons? How do these plasticity rules tune neurons for serving their
functions? Answering these questions is indispensable for building
realistic models of neocortical networks and for understanding how
the interplay of different forms of plasticity brings about the ability of
neocortex to support life-long learning.
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